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Abstract  

       The purpose of this paper is to study a new types of compactness in bitopological spaces. 
We shall introduce the concepts of  L- compactness. 

 

Introduction 

       The concept  of  bitopological space was initiated by Kelly[1].A set  X equipped with two 

 Topologies   and 2
 is called a bitopological space denoted by  . 

      By a directed set we mean a pair (A, ) consisting of a non-empty set A and a binary 
relation  defined on A and satisfies the following conditions: 

(1) a  a for each a  A. 

(2) If a  b and b  c, then a  c for each a, b, and c in A. 

(3) For each two members a and b of A, there exists a member c  A such that c  a and c 
b. 

                 If (A, ) is a directed set and   f is a function of A into a non-empty set X, then f is 
called a "net" in X and is denoted by (f, X, A, ). The image of a  A under f is denoted by fa 
and a net in X will be sometimes denoted by {fa: a  A}.[2] 

            A "filter" on a non-empty set X is a non-empty family F of subsets of X with 
the following properties: 

(1)    F. 

(2) If F  F and F  H, then H  F. 

(3) If F  F and H  F, then F  H  F. 

     A filter on a non-empty set is said to be an ultrafilter if and only if it is not properly 
contained in any other filter on this set.[2] 



 

IBN AL- HAITHAM J. FO R PURE & APPL. SC I.         VO L.24 (1) 2011  

L-open set was studied by Al-swid[2], asubset G of a bitopological space   is said 

 to be “L –open” set if and only if there exists a -open set U such that 
 UclGU 2 ,the family of all L-open subsets of X is denoted by L-O(X).The 

complement of an L-open set is called “L-closed” set,the family of all L-closed subsets of X 

is denoted by L-C(X).In a bitopological space  every -open set is an L-open 
set[3].The union of any family of L-open subsets of X is an L-open set, but the intersection 
of any two L-open subsets of X need not be L-open set[2].Al-Talkahny [3],introduced  two 
new concepts “L- 2T  -spaces” and “L-continuous functions ”. A bitopological space 

 is said to be “L- 2T  -space” if and only if for each pair of distinct points x and y 

in X,there exist two disjoint L-open subset G and H of X such that Gx  and Hy .Let  

  21
,,X

, 





 

 21
,,Y  be any  bitopological spaces and let   YXf :  be any function, 

then f is said to be “L-continuous” function if and only if the inverse image of any L-open 
subset of Y is an L-open subset of X. 

 

2- L-compactness 

Definition(2.1) 

      Let  be a bitopological space and let A be a subset of X. By an “L-open cover 
of A” we mean a subcollection of the family L-O(X) which covers A. 

Remark(2.2): 

      Every -open cover in a bitopological space  is an L-open cover. 

     The converse of remark (2.2) is not true in general as the following example shows: 

Example (2.3) 

 
     

 
  4,3,2,,F

1,,

3,2,1,3,2,1,,

4,3,2,1

2

2

1










X

X

X

X









 

                    4,3,2,3,1,4,3,1,2,1,4,1,4,2,1,3,2,1,3,2,1,,XXOL  L

et     4,3,2,1C , note that C is an L-open cover of X, but it is not -open cover. 

Definition(2.4) 

 A bitopological space  is said to be “L-compact space” if and only if every  L-
open cover of X has a finit subcover.    

Proposition (2.5) 



IBN AL- HAITHAM J. FO R PURE & APPL. SC I.         VO L.24 (1) 2011 

 If a bitopological space  is an L-compact space, then   1
,X  is a compact space. 

Proof:  follows from remark (2.2).  

Remark (2.6) 

The opposite direction of proposition (2.5) is not true in general, as the following example shows:  

Let   X and let ox  

  ox,,1    

I2 =The indiscrete topology 

    UorUxUXOL o;  

    Note  that  1,   is compact but  21 ,,   is not  L-compact. 

Proposition (2.7) 

An L-closed subset of an L-compact space is L-compact. 

Proof: 

       Let A be an L-closed subset of an L-compact space  and let 
 


:G  be 

an L-open cover of A .Then   cAG 


:  forms an L-open cover of X which is L-

compact space. So there are finitely many elements n ,,, 21   such that c
n

i

AGX
i


1

  ,it 

follows that 
n

i
i

GA
1

  .Hence A is an L-compact. 

Corollary (2.8) 

An L-closed subset of an L-compact space  is -compact. 

Proof: 

   Follows from proposition (2.7) and (2.5). 

Corollary (2.9) 

 A -closed subset of an L-compact space  is L-compact. 

Proof: 

    Since every -closed set is an L-closed set and by proposition (2.7). 

Corollary (2.10) 

A -closed subset of an L-compact space  is -compact. 



IBN AL- HAITHAM J. FO R PURE & APPL. SC I.         VO L.24 (1) 2011 

Proof:  

Follows from corollary(2.9) and proposition (2.5). 

Proposition(2.11) 

The L-continuous image of an L-compact space is an L-compact. 

    Proof: 

 Suppose that    is an L-continuous and onto function 

and  is an L-compact space. Let  be an L-open cover of , 

it follows that  is an L-open cover of  which is L-compact.So there are 

finitely many elements   such that  

.Therefore  ,hence is an L-compact. 

Corollary (2.12) 

      Let  be an L-continuous function, then  is a compact 

subset of  for each L-compact subset  of . 

Proof: 

       Follows from propositions (2.11) and (2.5). 

  It is known that every compact subset of any 2T  -space is closed. If we change the concepts 

of compact, 2T  and closed by the concepts L-compact- 2T  and L-closed, then this fact being 
invalid in general, as the following example shows: 

Example (2.13) 

 
      

I

X

X








 

2

1
2,1,2,1,,

3,2,1

 

            3,2,3,1,2,1,2,1,,XXOL   

            1,2,3,3,1,3,2,,XXCL   . Clear that X is an L- 2T -space. If 

 2,1A ,then A is an L-compact subset of X, but it is not L-closed. 

Definition (2.14): [3] 

Let  be a bitopological space and let A be a subset of X, Xx .Then A is called an 
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 L-neighborhood of x if and only if there is an L-open set G in X such that AGx  . 

Definition (2.15) [3] 

Let  be a bitopological space and let A be a subset of X.The intersection of all L-closed  

set containing A is called “L-closure of A”denoted by L-cl(A). 

Theorem (2.16) [4] 

L et  be a bitopological space and let A be a subset of X. A  point  x in X is an L-closure  

point of A if and only if every L-open neighborhood of x intersects A. 

Definition (2.17) [4] 

 Let  be a bitopological space and let  ,,, AXf  be a net in X ,then f is said to be 

 “L-convergent ”to a point ox  in X if and only if for each L-open neighborhood N of 

ox ,there exists an element Aao  such that Nfa   for each oaa  . 

Definition (2.18) [4] 

Let  be a bitopological space and let  ,,, AXf  be a net in X. A point  ox in X is  

called an “L-cluster point of f” if and only if for each Aa  and for each L-open 
neighborhood N of ox ,there exists an element ab   in A such that Nfb . 

Theorem (2.19) [4]  

 Let  be a bitopological space and let  ,,, AXf  be a net in X. For each Aa  

let   AinaxxfM  : ,then a point p of X is an L-cluster point of f if and only if 

 MclLp   for each Aa . 

Definition (2.20) 

Let  be a bitopological space and let Ғ be a filter on X . A point x in X is called an  

“L-cluster point of Ғ” if and only if each L-open  neighborhood of x intersects every member 
of Ғ. 

Theorem (2.21) 

Let  be a bitopological space and let Ғ be a filter on X . A point p in X is an L-
cluster point of Ғ if and only if  FclLp   for each F  Ғ. 

Proof: the “first direction”   

Suppose that p  is an L-cluster point of Ғ. then for each L-open neighborhood G of p , FG   

for each F  Ғ, it follows by  theorem (2.16) that  FclLp   for each F  Ғ. 
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 The “second direction”  

      Assume that  FclLp   for each F  Ғ, then by theorem (2.16) every L-open 
neighborhood of p intersects F for each F  Ғ. Hence p is an L-cluster point of Ғ 

 

Definition (2.22) [2] 

A collection of sets is said to have the finite intersection property  (FIP) if and only if the intersection of    

each finite   subcollection of it is non empty. 

Remark (2.23) [2] 

Every filter in a non- empty set X has the FIP. 

Theorem (2.24) [3] 

Let  A   be a non empty collection of subsets of a set X such that A has the FIP. Then there exists an  

ultra filter  Ғ containing A  . 

Proposition (2.25) [4] 

Let A be a subset of a bitopological space . Then A is an L-closed set if and only if 

  AclLA  . 

Theorem (2.26) 

Let  be a bitopological space. Then the following statements are equivalent: 

1- X      is an L-compact space, 

2- Every collection of L-closed subsets of X with the FIP has anon empty intersection, and 

3- Every filter on X has an L-cluster point. 

Proof: 

1→2 

Let  


:F  be a collection of L-closed subset of X with the FIP. suppose that 


 


F , 

it follows by De-Morgan Laws that XF c 





 therefore 






 


:cF  forms an L-open 

cover for X which is an L-compact space, then there exists finitely many elements 

n ,,, 21   such that XF
n

i

c

i





1

 . Again by De-Morgan Laws we have that 

 



n

i
i

F
1

which is a contradiction since  


:F  has the FIP. Hence 


 


F  
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2→3 

Let  Ғ be a filter on X, then by remark (2.23)  Ғ has the FIP, it follows that the collection 
   FFclL :  Ғ }of L-closed subsets of X also has the FIP, so by (2) there exists at least 

one point     :  FFclLx   Ғ } then by theorem (2.21) x is an L-cluster point of Ғ . 
Thus every filter on X has an L-cluster point. 

3→1 

Assume that every filter on X has an L-cluster point and let  be an L-open cover of X. 
suppose ,if possible, has no finite sub cover the collection    :  GGX  has the FIP, for 

if there is a finite sub collection   1: niGX i  of such that     1: niGX i  this 

implies that   XniGi   1: which contradicts our supposition that has no finite sub 

cover, thus must have the FIP, it follows by theorem (2.24)that there exists an ultra filter Ғ on 

X containing .by (3) Ғ has an L-cluster point Xx , then by theorem (2.21 )  FclLx   

for each F  Ғ, in particular  GXclLx   for each G  . But X-G is an L-closed subset 

of X for each G  , therefore by  propostion (2.25)   GXGXclL  for every G  . 

This implies   GGXx :  }, so by De-Morgen Laws   GGXx :  },that is, 

  GGx :  },which is a contradiction with the fact that  is an L-open cover of X ,hence 

 must have a finite sub cover and consequently X is an L-compact space. 

Proposition (2.27): 

Let  be a bitopological space. If X is an L-compact space, then every net in X has an 

 L-cluster point. 

Proof: 

      let  ,,, AXf  be a net in X . for each Aa  let  AinaxK f
xa  : . Since A is 

directed by   ,so the collection  AaKa :  has the FIP. Hence   AaKclL a  :  also has 

the FIP , it follows by theorem (2.26)   



Aa

aKclL  let  
Aa

aKclLp


 , then 

 aKclLp  for each Aa ,so by  theorem (2.19) p is an L-cluster point of f. 
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