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Abstract

Necessary and sufficient conditions for the operator equation X + 4°X "4 =1, to have a
real positive definite solution X are given. Based on these conditions, some properties of the
operator 4 as well as relation between the solutions X and 4 are given.
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Introduction
Consider the non-linear op erator equation
X+AX"A=1 )

where I is identity operator, and 4,4", X € B(H); where B(H ) denotes the Banach algebra of
all bounded linear operators on H; H is an infinite dimensional complex Hilbert space.
Several authors have studied the above equation when A, X are matrices and n=1,n=2
and they have obtained theoretical properties of these equations. In [1] Equation (1) was
studied in the case X 1is a self adjoint positive operator , which arises in many app lications

such as in control theory and statistics and in dynamic programming
In this paper, we study equation (1) where X belongs to the set; where

C:={d|4=T"T|,T e B(H }+(T)=|r]}.

Where r(T ) is the spectral radius of 7'
1-Preliminaries
In this section we present notation, lemma and theorem which will be used in the remainder

of the paper. The notation 4 >0 (A > 0) means that A4 is positive operator , and4 > B is
used as an alternative notation for 4 — B > 0.1t is well-known for any operator 7" B(H ), T'T
is positive operator [2, p.22] Jlet spec A denotes the spectrum of A.
Lemma 1.1[3, p. 866]: Let M and N be two arbitrary operators then:

AM N-N"M)< (MM + N*N)
Proof: By elementary calculus, we have that

(- N*M):,{ I’ N*]{_OI (I)} (%D

Since the non-zero elements of specMN and spec NM are the same [4, P.43]; so for any
two operators, we have:
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(R I 1 (4 )

Now, r(4) = |||, where || || denotes the operator norm. so

(W ) C éiMJW* .

O T
<
-1 O

e
i o]

M+N*N)

Which completes the proof.

2- Necessary and sufficient conditions of the solution of the equation

We study the existence of the solution of equation (1) by the following theorem:
Theorem 2.1: the operator equation (1) has a solution X positive operator if and only if the
operator A4 takes the following factorization form

n—1
Www)Tw'z ._.ifnisodd
A= )

(W*W);- Z ...if niseven

where W is an invertible operatorand W W +Z Z=1.

Proof: suppose that equation (1) has a solution X . Then, using the set C we can write X
asX=Ww.
Equation (1) can be written as
WA Ww) A=1
The prove using mathematical induction:

e Suppose n=1,then

* * —1

ww o+ A*Ww) a=1

* ®__ # Y1
ww AW (W) a=1
Further, we can rewrite the last equations as:

W*W+((W-1 )*A)(W*)’lAzl (3)
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Equation (3) can be rewritten in the equivalent form [5, p.171]:

[W H W}
i . =T (4)
WA | WA

Now, set Z=W "4 ;then A=W Z as desired,
e Suppose it is true when n = p to show that it is true when n=p +1
ww+a ww) " a=1
ww A ww) ww) a=1
If p is odd,
wwsaww) ww) ww) . ww)'ww)a=1
thenW' W+ AW 'W "W .. W'W"W'W " A=1
ww W w e e A) W ow W A =1 5)
Equation (5) can be rewritten in the equivalent form:

w ) w
WWAW" WA\ WW W W A

p-1
-_ kS
2

Now, set Z =W "W W~ .. W~ A, then A=W'W W'W ..W'Z ,as form (W'W)
If p is even, then:

Wz

-1

wwsaww) ww) . ww) ww) =1

WW+ AW W WAW= W W W W A=1

ww WA (e A) =1 6)
Equation (6) can be rewritten in the equivalent form:

w ’ w _,
WWSWR L WA W W W w4
New, set Z=W'W W' . W~ A4; then A=W'W W'W WW..WW)Z, as form
P
ww): z
Conversely,assume that the operator 4 admits the factorization 4 = (W*W WwW... W*)Z ,

ifnis odd, and set X = W W , we then need to show that X (which is positive operator ) is a
solution to the operator equation (1), we have:

XeAx " a=ww+wwww. wz)ww) wwww.w)
wwzwwww _(ww) _(ww)wwww . )z
—WWAZWW W W W W WWWW..WZ
=WW+2'Z

wl [w
12[7]
y

When n is even, then

A=WWW WW .. . WWZ,andset X =WW , we then need to show that X (which is
positive definite) is a solution to the operator equation (1) .we have.
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XA x"a=wwswwww._ wwz)ww)'wwww..wwz)

—ww+zwwww . wwww)ww) . ww)wwww.ww z)

—WW+ZWWWW . WWW W W www. . wwz)
—WW+Z7ZZ
w [w
2][7]
=7
which completes the proof of the theorem.

3- Relation between solution X and operator 4 :
In this section, we will study the relations between X and A4 in equation (1)

Theorem 3.1: 1f equation (1) has a solution X, then for all » € N the following hold:

-n 1 -n 1
(i) r[XTEA —A'X T?J <1.

n i
6 (X): (X p>aa
Proof:
(1) Using theorem (2.1), when n is even. We obtain:

r[XTn*;'A AxT3 J:r((W*Wﬁ% wwkz-z (wwf (W*W)%%j

- r[(W*W);_ 7-7" (W*W)_;j

1
Weset M = (W*W)5 ; then applyinglemma (1.1), we obtain:

-n 1 -n

A xT T ax T M z-7"M)

<rM'M+27)
(1)
1

Now, when n is odd; we obtain

n—1

r(X%;- A AXTT J - {(W"W)Tn*% (W*W)n; w z-z'www)T (W*W)%;' )

—Hw z-z"w)
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then applyinglemma (1.1) we obtain:

-n 1 -n 1

HWXZ 2A-AX2 2 = z-2W)

(i1) If n is even, then from theorem (2.1), we have

W (X —aa =wwlEwwl-(wwlzz Www)
—wwpli-zz \wwp

SinceWW+2"Z=1, Spec(ZZ*): spec(Z*Z) and,/ -Z"Z >0, therefore,

ww)(r-zz' \ww)z>o .

If n is odd, then. From theorem (2.1), we have

WF(F —ad = whwf-(ww)=wzzwmww)=
n—1

_(rw)T ((W*W)%(W*W)% - W*ZZ*WJ ww)>

_(ww )z w -wzzw|ww)E
_(wwTwl-zz \ww T w
Since WW+2'Z=1 and spec(22”)=spec(2’Z) 1~ Z"Z=WW >0, and thus,

[-2'Z >0, therefore,, (7' )2 (1 —zz") ' W)z >0
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