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Abstract

This paper studies the existence of positive solutions for the following boundary value
problem :-

—y"=rgt)f(y) a<t<b
ay(a)-py’(a)=0
y(b)=0

The solution procedure follows using the Fixed point theorem and obtains that this problem
has at least one positive solution .Also,it determines ( A ) Eigenvalue which would be needed
to find the positive solution .
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Introduction

In this paper we shall consider the second - order boundary value problem (BVP)

—y"=kgt) f(y) a<t<b
ay(@)-By'(a)=0 eeeL])
y(b)=0

The following conditions will be assumed throughout :-

A- f:]0, ) —> [0, ) is continuous ,

B- g:[0, 1] - [0, ) is continuous and does not vanish identically on any
subinterval ,
i
C- f, :Limﬁ and f_ :Lirnf(—x) exist ,
x—>6 X X—o X

D- o, B such that o and 3 are not both zero and Z=a + > 0, and

E- a>0,b<1.

The boundary value problem (1.1) arises in the applied mathematical sciences such as
nonlinear diffusion generated by nonlinear sources , thermal ignition of gases and chemical

concentrations in biological problems ; for examplesee [1],[2],[3] . When A=1 and f is

either superlinear that is (f,=0 and f,, = o) or fis sublinear that is (fy=c and f,=0),
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Erbe and Wang [5] obtained solutions that are positive with respect to a cone which lies in an
annular type region .The methods of [5] were then extended to higher order BVP in [4] .

For the case a =1, = 0,y =1, 6 = 0, Johnny Henderson and Haiyan Wang [7] obtained
solutions that are positive for an open interval of eigenvalues. Not required in this work that

f would be either superlinear or sublinear , yet, as in [4] , [5] but as in [7] , the arguments
presented here for obtaining solutions of(1.1)for certainA involve concavity properties of
solutions, which are employed in defining a cone on which a positive integral operator is
defined . A Krasnosel’skii fixed point theorem [8] is applied to yield positive solutions of
(1.1), for A belongs to an open interval.

Section 2 , presents some properties of Green’s functions that are used in defining a positive
operator , also states the Krasnosel’skii fixed point theorem .

Section 3 , gives an appropriate Banach space and constructs a cone to which we apply the
fixed point theorem yielding solutions of 1 .1, for an open interval of eigenvalues .

2- Some Preliminaries

In this section , we state the above mentioned Krasnosel’skii fixed point theorem. We will
apply this fixed point theorem to completely continuous integral operator , whose kernal ,
G (t,s),is the Green’s function for

-y" =0

ay(@)-By'(@=0
y(b)=0

Is

l(01‘[+B)(1-s) a<t<s<b
G(ts)=<" (2.1)
z(ocs+[3)(1-t) a<s<t<b

from which
G(t,s)>0 on(0,1)x(0,1), .......... (2.2)
G(t,s)SG(s,s)=lz(as+B) (1-s) , a<t<b,a<s<b, ... (2.3)

and it is shown in [5] that :-

2a+1 2b+1
t<
4 4

IN

G(t,s)2M G(s,s)= M —;(as+B) (1-s)

Where M = mm{l, o+ 4P }
4 4(a+P)

We shall apply the following fixed point theorem to obtain solutions of (1.1) , for certain A [
Theorem 1 [8]. Let B a Banach space, and let P be a cone in B . Assume N , K are be
0e NcNcK,and let T:Pm(I_(\N)—>P open subsets of B with

a completely continuous op erator such that , either

I-]| Tu||<||ul|],uePnoN,and || Tu||=||u]||,ue PN, or

2-|| Tu||>2||ull,uePnN,and || Tu||<||ul|l,ueP K
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. P, (IZ \N) Then T has a fixed point in
3. Solutions in The Cone

In this section , apply Theorem 1 to the eigenvalue problem (1.1 ) . Note that y(t) is a solution
of (1.1) if , and only if

y(®) =A[G(t.9)gs) fy(s)ds . a<t<b

For our construction , let B=C[a, b], with norm , ||x|| = Sup [x(t)|
a<t<b

Definea cone P by :

2b+1

P= {x €B:x(t)>0on[a,b] , min x(t)2 M"x"}
Tﬁt_—

Also, let the number he[a,b] be defined by [
2b+1 2b+l

TG(h,S) g(s) ds = max jiG(t,s) gs)ds (3.1)

2a+l 2a+l
4 4

Theorem 2. Assume that conditions (A),(B),(C) and (D) are satisfied .Then , for each A
satisfying

o (3.2)...m. —a 4 ch<- 1
M [Gh,s) g(s) ds)f, (| Gs.9) fs) ds)f,
(2a+1% a

there exists at least one solution of (1.1) in P .
Proof. Let A be given as in (3.2) . Now , let €> 0 be chosen such that

4 1
b+ <A —/4m—— (3.3)

(M Ié(h, s) g(s) ds)(f,, —¢) (f G(s,s) g(s) ds)(f, +&)
(2a+1% a

Define an integral operator T : P — B by

Ty(t) =A[G(t.9) gs) fly()ds . ye P ... (3.4)

We seek a fixed point of T in the cone P.

From (2.2), we note that, fory € P, Ty(t)> 0 on [a,b]. Also , for y € P, we have from
(2.3) that

Ty(t) = & [G(t.s) g(s) fly(s))ds
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Tyl <2[G(s.9) gs) fly(S)ds ... (3.5)

Now ,if y € P, we have by (2.4) and (3.5) ,

i, Ty(©=, min XIG(t s) g(s) f(y(s))ds

2+l

4 7 7

>MA[G(s.s) gs) f(y(s))ds

= M[Ty]|

— p . In addition , standard arguments show that T is As a consequence , T : p
completely continuous.
Now, turningto f; , there exist an K ;> 0 such that f(x) < (f, + ¢) x , for 0 <x < K.

y € Psuch that ||y || =K;, we have from (2.3) and (3.3) So , by choosing
b
Ty(@®) < 1| G(s, s) g6) y(s) ds
SXIG@,@g@)GB+8)y@)®

< kj G(s, s) gs) ds (f, +¢) y6) |y]
< vl

Consequently , [Ty|< |y - So.if weset Q= {x € B| [|x| <K}

then
Tyl £ |lyl| ,for ye P naQd,.  .......... (3.6)
Next , considering f,, , there exist an K, > 0 such that f (x) > (f,, - &) x ,for all x> K, .

Let K53 = max {2K , K%/I} and let Q,={x e B ||| <Kjs}

If y e Pwith [ly][=K;,then min y(t)> M]y|=MK, =K, , and we have from (3.1)
)

and (3.3) that

Ty(h) =& j G, 5) g(s) fy6) ds

(2b+1/
>0 [Gh, s) gs) fyE) ds
(2a +1/
(2b+1%
> jG(h, s) g(s) (f, —¢) y(s) ds
(2a +1/
(2b+l/
[ G, s) gs) ds (£, - o) |y]
(2a +1/

2 |l

> L
M
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Thus, |[Ty||> |y|| - Hence,

Tyl = lyll , fory ellP nlJaQ2, ... (3.7
Applying (1) of theorem 1 to (3.6) and (3.7) yields that T has a fixed point y(t)

ePnm (Q_Z\Ql) . As such, y(t) is a desired solution of 1.1 for the given A . Further, since G
(t,s)>0, it follows that y(t) > 0 for a <t <b. This completes the proof of the theorem .

Theorem 3 . Assume that condition (A),(B),(C), (D) and (E) are satisfied . Then , for each A
satisfying

Dy - <A< L (3.8)
M [G(h,9) gls) ds)t, (| Gs.9) s) o),
(2a+1%

there exists at least one solution of 1.1 in P .

Proof. Let A be given as in (3.8) . Now , let £€> 0 be chosen such that

ey ! <A< = L (3.9)
M IG(h, s) g(s) ds)(f, — €) (J‘G(s,s)g(s) ds)(f,, +¢)
(2&+1% a

Let T be the cone preserving , completely continuous operator that was defined by(3.4).
Beginning with f, there exists an K 4> 0 such that f(x) > (fy - g) x , for 0 <x < K,.

y € Psuch that || y || = K4, we have from (3.1) and (3.9) so, for So

Ty(h)= 7»] G(h,s) g(s) f(y(s))ds
(2§+1 %
) [G(h,s)gs) fy(s))ds
(2a+1 %
(2b+1 %
>\ jG(h,s) gs) (£, —¢) y(s)ds
(2a+1%

(2b+1)

=M [Geh.9) ) dsf, - o) o]
(2a+]%
2 [yl

Thus, [[Ty]> |ly|| - So . if we let

Q3= {x e Bl [|x]| <K4}

then

ITy|| = [ly]| for y € PAQs  ....... (3.10)

It remains to consider f,, , there exists an Ks> 0 such that f (x) < (f, + €) x, for all x> K5 .
There are the two cases , (a) fis bounded , and (b) f is unbounded .

For case (a) , suppose K¢ > 0 is such that f(x) < Kg, forall 0 <x< oo .
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b
Let K; = max {2K, , Kg kj G(s,s) g(s) f(y(s))ds} . Then, for y € P with ||y|| = K; we have

from (2.3) and (3.2)

Ty(0= 1] G(t.s) (s) f(y(s)) ds}

b
<LK, [ Gs.9) gs) ds
<[l
so that [[Ty||< ||| Soif Q4= {x € B [|x|| <K}
then
Tyl <|lyl] ,for y ePnddy .......... (3.11)

For case (b) , let Kg > max {2K,, K5 } be such that f(x) < f(Kg), for 0 <x < Kg.
By choosing y € P such that ||y|| = Kgand we have from (2.3),(3.2 ) and (3.9)

Ty(t)= XIG(t, s) g(s) f(y(s))ds
<1 [Gs.5) gs) f(y(s)) ds
<A jG(s,s) gfs) f(K ) ds

<A jG(s,s) gs) ds (f, +e)K,

But

1 [ G(s.9) gs) ds (£, +&)K, =1 G(s.9) &(s) ds (£, +2)[y]

Therefore
Ty (< 1 [G(s.9) e5) ds €, + o)

and so [[Ty||< |y|| - For this case , if we let

Q4= {x e Bl [[x]| <Ks}

then

Tyl <|lyll , foryePnddy .......... (3.12)

Thus , in both cases , an applying of part (2) of theorem 1 to (3.10),(3.11) and (3.12) yields

that T has a fixed point y(t) €P m(Q_4\Q3) . As such , y(t) is a desired solution of 1.1 for

the given A . Further, since G (t, s) > 0, it follows that y(t) > 0 fora<t <b. This completes
the proof of the theorem .
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