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Abstract

In this paper, the finite difference method is used to solve fractional hyperbolic partial
differential equations, by modifying the associated explicit and implicit difference methods
used to solve fractional partial differential equation. A comparison with the exact solution is
presented and the results are given in tabulated form in order to give a good comparison with
the exact solution.

Introduction

An important type of differential equations which is called fractional differential
equations in which the differintegration is of non-integer order [1].

Real life problems with fractional differential equations are of great importance, since
fractional differential equations accumulate the whole information of the function in a
weighted form. This has many applications in physics, chemistry, engineering ,etc. For that
reason, we need a method for solving such equations, effectively, easy use and applied for
different problems[2].

Consider the fractional order partial differential equation [3][4]:

o*u(x, t) o%u(x, t)
—5 )

X

+s(x,t), L<x<R,0<t<T . (1)

together with the initial and zero Dirichlet boundary conditions :
u(x,0)=1(x),u,(x,0=h(x), L<x<R
u(L,t) =0,u(R,t)=0 for 0<t<T

olu(x,t) _ . o :
where ————— denote the left-hand partial fractional derivative of order q of the function

ox4

u with
respect toxand 1<q<2.

The left-handed shifted and the right-handed shifted Grianwald estimate to the left-
handed and right-handed derivatives, are given by [1][5][6] :

q n
) _ 1 D afx - (k- DAY)
d,x?  (ax)? (5




IHIPAS
IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23(3)2010

dif x) _ 1
d_x9  (Ax)d &

where n is the number of subdivisions of the interval [ L, R ] and q is a fractional number.
Therefore:

Z gf(x + (k — 1) Ax)

Mulxit) 1 &
J D gu(x - (k- DAx. )
0,.x4 (AX)q k=0
i+1
Z Ui 3)
(AX)q
and
5qU(X1, ]) 1 n—-i+1

S Z gu(x + (k- 1) Ax, 1))
X X

1 nil
= Slitkelj e, (4)
(AX)q k=0
where g=1and g = (—l)kq(q_ 1)...(q —k+ 1) ,k=1.2,...

k!
The Explicit Finite Difference Method for Solving Fractional
Hyperbolic Partial Differential Equations

The explicit finite difference method is improved to solve the initial-boundary value

problem (1)-(2). To do this, we substitute t = t;, in eq. (1) and replace the partial derivative
2

ot2

with its central difference approximation to get :

_ q
Uj g — 205 5+ U5 . o'u;

aJ .
(At)z ,J an +81’J ...................... (5)

where tj=jAt, j=0,1,...,m and m is the number of subdivisions of the mterval [0, T], t € R.
Next, substitute equation (3) in equation (5) to obtain:
_2ui. +u. . C i+1
J Ll Z
= g Wy +s1=12,..,n-1j=0,1...m—-1 ...(6)
T =

On the other hand, the initial and boundary conditions given by eq.(2) becomes :

Ui 541

u o =u(x;,0) = f(x;), % for i =0,1,..,n

=u(Lt;)=0, u,; =uR,)=0forj=0,1,...m
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and by using the central difference approximation to the initial derivative conditions ,one can
get :

L(u . _1)=h;,i=0,1,...,n

2a b T TR

where h; =h(x;) fori=0, 1,..., n. Hence:

U = +2Ath;,i=0,1,...,n

M oreover, equation (6) becomes:

5]
Ui iy =205 5 — U4 5 +—ngku1—k+u + SIJ(A'[) ................. (7)
(Ax)
where i=1,2,...,n—1, j=0,1,...,m—1.
Therefore:
2 i+1
(At)7c; o & 2
U =2u0—u; g+ _— Z gkl k410 tSio(AD” (8)

(Ax)? (5
By substituting U; | =U; 1 — ZAthi back into eq.(8) one can show that u, ; can

be calculated from the following equation:

(At) C10 i (At
ui’l :fl +— Z(Ax)q Z k i—k+1 + 10 +Atg =0,1,........ n-—1
where i=0, 1,..... n—1.

By evaluating the above equation for each i=0,1,...,n—1, one can get the values of
Uiy, 1= I,2,...,n—1. Then by evaluating equation (7) at each i=1,2,....n—1 and
j=2,3,...,m—1 one can get the numerical solution of eq.(1).

Then the resulting equation can be explicitly solved to give:

i+l

Uj g —2u Uy =T z Sl wilj e 9)

Where r = k2 / h? The resulting difference equation is stable since we

-Dk(g-w-1
let g=1 and g, = (-1) wa(q-Dk(g-w ),wzl,zj_,_,_

w

1< q <2, 1#1 ,hence g > 0 for all value of i. Therefore:

Z gw <—g=-(C-9=q9 (10)

The difference between the analytical and numerical solutions of the difference equation
remains bounded as j increases.
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Let the error E;j=u(h;, kj) —u;; then the stability condition under which the finite difference eq.
)
is stable, to find the stability conditions under which the error E;; is bounded .

Smith [7] shows that the error E;; can be written in the form :

yBihg j ok
Ei’jze - ,where s=€ y=+-1 (11)

Where ais a complex constant, one can substitute egs .(10), (11) into (9), to get:
g—2—¢ ' —qeP™W <
Assumingthat, 0 = Bh( 1- W) ,2then it is easily known that the equation for R is:
g2 —(2-1qe")e+1=0

Let A=2+ rqeye , where

eye|£1

Hence the values of € are:

_A+JA2—4 A—-A? +4

and €5 =
2 2 2

From eq.(11), the error will not grow with time if

g

|ay | <1,forallreal p (12)

Equation (12) is called the Von-Neumann’s condition for stability .Thus we will use eq.
(12) to

find the stability condition of the finite difference equation.

For stability; asr, q and B are real and when giving stability while €, gives instability.

When—-1<A<1, we get slandaz are comp lex number, hence:

_A+ y4—AZ e A—y\)4—A2
2 2

Then using Von-Neumann’s condition (12) to prove that eq.(9) is stable

81 nd 81
For —1< AKX, the only useful inequality is A < —1, hence 2+rqeye <1, where

-1
|ey6 | <1.Therefore; r < — , where 1 <q < 2.
q

1
Hence, |r|< . which is the stability condition.
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The Implicit Finite Difference Method for Solving Fractional Hyperbolic
Partial Differential Equations
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Now, we can improve and introduce similar approach for the implicit finite difference
method

to solved the one—sided fractional hyperbolic partial differential equations. The resulting
discretization takes the following form:

Bt

Ui — 20t U5 Gij
2 T 9 Zgwui—WHJ
k h w=0
Where 1 =1,2,...,n—1;j=0,1,...,m—1. Then to get
i+1
ui,jﬂ - 2ui,j +ui’j_1 =T Z gwui_w+1,j+l ....................... (13)
w=0

In the above equation and under the same conditions of eq.(9) and substituting eqs. (10)
and (11) into eq. (13), one can get:

g—2-¢ < rqeyes,where 0=Bh(1-w).

Hence the values of € are:
1 1

_A)2 —(1-A)2
g _rd=A)7 and SZZM where A=1—rqeye.
A

To discuss the stability of eq. (13); by using Von-Neumann’s condition (12). When A
<-1

3

we get real the roots, &€ also, which gives instability while €, gives stability for this
problem .

1
1—y(1-A)2
A

Now, when —1 <A <1, we get complex number, which are & =

1

1+y(1—A)2 ~ y
and g = A .and the condition of the stability leads tor > 1 when 1<q<2
and
e? | <1
- . 2
Therefore; the finite difference eq. (13) is instable forr < —, 1 <q<2.
q

Illustrative Example

To illustrate the methods of the solution, an illustrative numerical example is considered:

Example:-
IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (3) 2010

Consider the fractional order partial differential equation :
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0%u _ 1 x% o' u
ot (0.5 ox'?

Together with initial and zero Dirichlet boundary conditions:

ou(x,0)

—4x2% +2x3 = 2.546x%t% +2.546xt%,0<x<2,0<t<1

u(x, 0)=0, =0for 0<x<2..

u(0, t)=0, u(1, t)=0 for 0 <t <1.

This example has the exact solution as: u(X,t) = X2(X— 2)t2,[8]. which is
considered for the comparison purpose. Here; we use the explicit and implicit finite
difference methods to solve this example numerically. To do this, first we divide the x-interval

into 2 subintervals such that X; = 1, i=0,1,2 and the t-interval into 2 subintervals such that
t i= %, j=0,1,2. Thus, the initial and zero Dirichlet boundary conditions become:

u(x;,0) =0 fori=0,1,2.

M =0 fori=0,1,2.
ot

u(0,t.)=0 forj=0,1,2.

u(l,t;) =0 forj=0,1,2.

By using the central difference approximation to the initial derivative condition one can
get:

i(ui’l —U; _1) =0; hence

ui,l - ui,_l for i:0,1,2.
M oreover, equation (7) becomes:

1_ i+1
9. 2
Uy iy =205 -5 +025%,2 D gy gy
k=0

+0.25(—4x;” +2x;° —2.546x;°t;7 +2.546x,t;)

J
where i=1 and j=0, 1.

Therefore

1in
Uiy =205~ +0.25x;2 ngui—kﬂ,o +
k=0

0.25(—4x;% +2x;° —2.546x 2 t,> + 2.546x1t,%)
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By substituting U; _; = U;; in the above equation one can show that U, can be calculated

from the equation

11
u;; =u; +0.125x;2 Z rUi—k+1,0 T
k=0
0.125(—4x,” +2x ;> —2.546x *t,* +2.546xt,)

Thus
Uy =0.125(4x,” +2x,°) =-025.
Then

12
ul,z = 2111,1 _ul,o +0.25X12 nguz_k,l +
k=0
0.25(—4x,? +2x,° —2.546x,%t,2 + 2.546x,t,%) =-0.947.

These values are tabulated down with the comparison with the exact solution. See table (1)

Second, we divide the x-interval into 10 and the t-interval into 10 subinterval. Thus, the
initial and zero Dirichlet boundary conditions become:

u(x;,0)=0, %:Ofor i=0,1,...,10.

u(0,t;.)=0,u(l,t;) =0, forj=0,1,....10.

The results are presented in table (2).

Conclusions

1. The finite difference method gave the numerical solution of the fractional differential
equations and it depended on the Grunwald estimate for the fractional derivatives .

2. The stability results in the finite partial differential equation case as generalization and
unification for the corresp onding result in the classical hyperbolic partial differential equation.
3. Similar to this work, the explicit finite difference method can be also used to solve the
initial-boundary value problems of the two-sided fractional hyperbolic partial differential

q q
_ﬁu(X,t) =c(x t) —a ux 9 +d(x, t) —5 u(x, 0 ts(x t)
ot 0 .x4 0_x1

J’_

equations given by,

together with the initial and zero Dirichlet boundary conditions:

u(x,0) =f(x),u(L,t)=0,u(R,t)=0 for L<x<R]}

odu(x,t) . o%u(x,t)
U g Y

x4 0_x1
_l’_ —
right- handed partial fractional derivatives of order q of the function u with respect to x and 1
<q<2.

where L x<R,0<t<T, denote the left-handed and the

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23(3)2010
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In this case equation (4) becomes

n—-i+l

Ci,j+1 dij+1
ui,j+1_2ui,j+ui,j 1= Zgw i W+1,_] (Ax )q Z Ewli+w- 1J+S 1,]

4. In a similar manner, the 1mphclt finite difference method can be also used to solve the
initial-boundary value problems of the two-sided fractional hyperbolic partial differential
equations given by equations:-

ou(x, t) oM (x,1) 0Mu(x,1)
2 = ok )t +d(x, 1) ———F +5(x, 1)
ot 0, x4 0_x41
In this case eq.(4)becomes:
Ci, j+1 % dij+ n‘z”l
U 41 2ui,j +ul,_]—1 =— Ewli—w+1,j+1 +— Ewli+w—1,j+1 TS ,j+1
(Ax) 3o (Aax)?

where i=1,2,...,n—1; j=0,1,...,m—1.
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Table (1) Represents the numerical and the exact solutions for n=m=2 of example.

Numerical solution u;;
X; t; Exact solution u(x;t;)
Explicit method | Implicit method

1 0.5 -0.25 -0.25 -0.25

1 1 —-0.9472 —-0.9684 -1

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL.23 (3) 2010
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Table (2) Represents the numerical and the exact solutions for n=m=10 of example.

Numerical solution u;;
X t; Exact solution u(x;t;)
Explicit method Implicit method
1 0.5 —-0.25 —-0.25 -0.25
1 1 —-0.994 —0.995 -1
0.8 0.2 —0.0398 —0.0389 —-0.031
0.2 0.7 —-0.0326 —0.0393 —-0.035
0.4 0.9 -0.2129 —-0.2026 —0.207
0.6 1 —0. 5096 —0. 5063 —0. 504
1.2 0.7 —-0.5655 —0.5641 —-0.564
1.4 0.3 -0.1014 —0.1042 —-0.106
1.6 0.8 —0.6568 —0.6551 —0.655
1.8 1 —0.6466 —0.6467 —0.648
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