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Abstract

Let R be a commutative ring with unity M an R-Module. M is called coprime module
(dual notion of prime module) if ann M =ann M/N for every proper submodule N of M In
this paper we study coprime modules we give many basic properties of this concept. Also we
give many characterization of it under certain of module.

Introduction
Let R be a commutative ring with unity. M an R-Module. N is called prime submodule of
an R-modules M if N #M and whenever rx € N such that r € R, x € M, then either x eN or r
€ [N: M], see [1], [2] M is called a prime module if ann M = ann N for every non-zero
R R
submodule N of M, see [3],[4] .It is clear that M is prime iff <0> is Prime submodule of M.

Yassemi.s. in [5], introduced the notion of second submodule (as dual notion of prime
submodule) as follows: N is second submodule of an R-module M if for every r € R, the
homothety r* on N is either zero or surjective, where if M is an R-module and r €R, then an
R-endomorphism r* is called homothety if r*(x) = rx for all x € M. M is second module if it
is second submodule of M.

Annin. S. in [6] introduced the notion of coprime modules (as dual notion prime

modules) as follows: An R-modules M is called coprime if ann M =ann M/N for every
R R
proper submodule N of M .Not that [N: M] = ann M/N .Specially a ring R is coprime iff R is
R R
coprime R-module.

Abubhilail J.in [7] in introduced a notion coprime submodules (as dual notion prime

submodules) as follows: N is called coprime submodule of an R-module M if ann M=W
R

(M/N)= {a € R; the homothety r* on M/N is not surjective}, see [5].We notice that M is
coprime module iff M is second module iff (0) is coprime submodule.

The main purpose of this paper is to give basic properties of coprime (second) modules
and study the relationships between coprime modules and other modules

We show that a submodule of coprime module need not be coprime module and we give
certain conditions to make a submodule of coprime module is coprime. M oreover we obtained
the relationships between coprime modules and divisible modules, principally injective and
injective modules. Finally we investigate the behavior of coprime modules under localization.
Definition 1:[6] An R-module M is called coprime if for every proper submodule N of M,

annN = ann(M / N).
R R



IHIPAS

IBN AL- HAITHAM J. FOR PURE & APPL. SCI. VOL23(3)2010

Specially, a ring R is coprime iff R is a coprime R-module.

Recall that a proper submodule N of an R-module M is called invariant if for each f €
End (M), f(N) = N. M is called fullyinvariant if every submodule of M is invariant, see [8].
R

.Wijayanti LE in [9], gave the following characterization for coprime modules.
Theorem 2: [9]

Let M be an R-module, then the following statements are equivalent:
1. M is a coprime R-module.

2. aI}%nM = agn (M /N) for every proper invariant submodule N of M.

Proof:
(1)—— (2) is obvious.
(2)—> (1). To prove M is a coprime R-module. Assume that ann (M /N) & ann M
R R

for some proper submodule N of M. Let [ = agn (M /N). Thenl & ann M and IM < N.
R

But I M is invariant, since for each e End (M), fIM)=1f(M) < IM. Hencel c ann (M
R R

/1TM) = annM, which is a contradiction. m
R

Note that, statement (2) in theorem (2) is used to define coprime modules in [27,
Definition 1.3.1].
First, we give some remarks and examples of coprime modules.
Remarks and Examples 3:
1. Z as Z-module is not coprime.
2. Q as Z-module is coprime module.

3. pr as a Z-module is a coprime module [9].

4. Every simple R-module is a coprime module, however the converse is not true for example:
Q as Z-module is coprime and not simple.

Recall that an R-module M is called multiplication if for any submodule N of M, there
exist an ideal I of R such that IM=N, equivalently for every submodule N of M, N=[N: M |M,
see [10].

5. If M is a multiplication coprime module, then M is simple, and hence M is prime.

Proof: Since M is a coprime R-module, then ann M = [N 1:1 M] for all proper submodule
R

N of M. Hence (annM)-M =[N : M]-M. Thus (0) = [N : M]-M. But M is a multiplication
R R R
R-module, so [N : M]-M =N, and hence N = (0). Thus M is a simple R-module, and M is
R

a prime R-module. m
The condition "M is multiplication" can not be dropped from previous remark for

example: pr is a coprime Z-module, and by [2, Remark 1.1.3(11)] pr is not prime and not

multiplication.
6. If M is a cyclic coprime R-module, then M 1is simple and so prime.
7. R is a coprime ring if and only if R is a field.

Proof: The proof follows by (Rem. and Ex. 2. (5), (4)). m
8. Z, is a coprime Z-module iff z is a prime number.

Proof: The proof follows directly by (Rem. and Ex. 3 (4), (5)). m
9. For any n,m € Z; n # m, the Z-module M =Z,® Z,, is not coprime.
10. Every vector space M over a field R is a coprime R-module.
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We have the following proposition:
Proposition (4):
Let M be an R-module. Consider the following statements:
1. M is a coprime R-module.
2. ann M = [x}:{ M] for every x € M such that (x) is a proper submodule of M.
R
3. Forevery ideal I of R and for every x € M, (x) is a proper submodule of M such that I -

M o

—— =(x), impliesI=0o0r I M =0.

(x)
Then (1) = (2) < (3), and (2) = (1) if N[x, RM] = [Zsz l:{M], where x; eM and A is
any index set.
Proof: (1) = (2). It is clear.

M
2)=@3).Let I- U =(x) and assume [ # 0, then I M < (x), thatis | < [xl:{ M] and by
X

2)I < ann M. Thus I M =(0).
R

M
B)= (2).Let r € [xl:{M]; x € M and (x) proper submodule of M. Thenr € agn (—),
X

M
that is (7) (—) =0, hence by (3), eitherr=0or () M =0. Thusr € ann M.
X R
(2) = (1). Let N be a proper submodule of M. Then N = >R x;, x; € N. So that [N : M]=[2R
R
x:M]= N [x, :M]=annM. =
R x;eN R R
The following proposition is a characterization of coprime module under the class of
finitely generated (multiplication) modules.
Proposition (5):
Let M be a finitely generated (or multiplication) R-module, then M is a coprime R-
module if and only if aEnM =[N 1:{ M], for every prime submodule N of M.

Proof: (=) It is clear.
To prove the converse, let W be a proper submodule of M. Since M is finitely generated

(or multiplication) R-module, then by [15], [1] there exists a maximal submodule N of
M (which is prime by [30, Corollary 2.5, ch.1]) such that W < N# M. Hence [WI:{M] c

[NI:{M]. But [NI:{M] = ann M by assumption. Thus [Wf{M] c agnM, and so agnM =
R

[Wl:{ M].

Recall that a submodule N of an R-module M is called second submodule if for every r €
R, the homothety r* on N is either zero or surjective, where if M is an R-module and r €R,
then an R-endomorphism r* is called homothety if r*(x) = rx for all x € M; see [29,
Definition 2.1. (b)]. M is second module if it is second submodule of M
_Remark (6): It is clear that N is a second submodule of an R-module iff for every reR, r#0,

either IN=N or rN=0.
The followingresult is an interesting characterization of coprime modules.

Theorem (7):
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Let M be an R-module, then M is coprime R-module iff M is a second R-module.
Proof: (=) Let M be a coprime R-module. Let » € R such that » # 0. Suppose the homothety

r* on M is not surjective, so » M # M. Let » M = N, then it is clear that » € [N : M]. Since M
R
is a coprime, then [N : M] = annM. Hencer € annM, thatis » M =0. Thus » * = 0.
R R R

(<) Toprove ann (M /N)= annM for every proper submodule N of M. Let » € [N : M],
R R R

thenr M < N < M. Since M is a second submodule, then the homothety » * on M 1is either
zero or surjective. If » * is surjective, then » *(M) =r M = M, implies M < N which is a

M
contradiction. Thus » M =0 and sor € ann M. Therefore ann — = annM. m
R R

R

The following result is an immediate consequence of Theorem (7) and [16, Rem. and Ex.
1.1.4 (3)).
Note (8):

If M is a coprime R-module, then annM is a prime ideal, and R / annM is an integral
R R

domain.
So that we shall say that M is P-coprime if M is coprime with annM = P.
R

A series of results follows by using theorem (7).
Corollary (9): [28]
Let M be an R-module, then M is coprime iff for every » € R, » # 0, eitherr M =0 or r M =
M (i.e. M is a second module).
Proof: 1t follows directly by Theorem (7) and Remark (6). m
Corollary (10):

Let M be an R-module, let I be an ideal of R such that I < annM. Thus M is a coprime
R

R-module if and only if M is a coprime R /I-module.
Proof: 1t follows by Theorem (7) and [16, Rem. and Ex. (1.1.4(8)). m
Corollary (11):

Let M be an R-module. Then M is a coprime R-module iff M is a coprime R =R/
ann M -module.
R

Proof: 1t follows directly by previous corollary. m
Corollary (12):
If R is an integral domain, then Q(R) [the total quotient field of R] is a coprime R-
module.
Proof: Is obvious.
Corollary (13):
The homomorphic image of coprime R-module is coprime.
Proof: It follows by Theorem (7) and [16.Rem. and Ex. (1.1.4(5)]. m
Note that,Wijayanti .LE. proved that if M is a coprime R-module and N is an invariant
submodule of M, then M / N is a coprime R-module, see [9, Prop. 1.3.8]. Hence the following
corollary is a stronger result.
Corollary (14):
If M is a coprime R-module, then M / W is a coprime R-module.
Proof: Let . M —— M / W be the natural projection. Hence the result follows by previous
corollary. m
Corollary (15):
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Let M, W be two R-modules such that M = W, then M is coprime iff W is coprime.

Proof: It is immediate by corollary (14). m

By considering (Rem. and Ex. 3 (1), (2)) a submodule of coprime R-module (second
module) need not be coprime R-module.

However, in the following proposition, this is true under certain condition.
Proposition (16):

Let N be a non-zero proper submodule of an R-module M such that » M NN = r N, for
every r € R, then M is P-coprime iff N and M / N are P-coprime R-modules.

Proof: If M is a P-coprime R-module, then M is coprime with annM = P. Thus by corollary
R
(14) M / N is coprime. Since P= annM = ann (M / N), then M /N is P-coprime.
R R

Now, to prove N is a P-coprime module. Since M 1is coprime, then for any » € R, r# 0,
eitherr M =0orrM=M.IfrM =0,thenrM "N=0.ButrM N"N=rN, then rN=0.Ifr
M=M,sorM NnN=N.ButrM NnN=rN, hencer N=N. Thus N is second.

Toprove N=P = agnM. It is clear that agnM C algnN. Letr e ar}‘{mN, thus » N = 0.

If » M =0, there is nothingto prove. [f r M =M, thenr M "N =N. But » M " N =rN.Thus
r N =N and so N = (0) which is a contradiction.

M
Conversely, if N and M / N are P-coprime. Then P = agnN = agn ﬁ and » N =N, r

M M
— forevery r ¢ P. To prove M is P-coprime. It is clear annM c annN = ann —

N N RN
=P.Letr eP,sorN=0andrM < N.Hencer M "N=rM,butrM "N=rN, sorM=r
N=0.Thusr € annM hence P = annM Letr ¢ annM Pandletm e M, thenm + N e

M

— =r—,hence m + N=r (m'+N) for somem' e M. Thusm —rm' e N=rN,som —rm'=

N
rn forsomen € N and hencem =r (m' + n) € r M. Thus M =r M for every r ¢ P, and so M
is P-coprime. m

Recall that a ring R is said to be regular (in sense of Von Neumann) if for each x € R,
there exists @ € R such that x=x" - a, see [6].
Corollary (17): Let M be a module over a regular ring (in sense of Von Neumann) and let N
be a submodule of M. Then M is a P-coprime module iff N and M /N are P-coprime R-
modules.
Proof: Since R is a regular ring, then for every » € R, » M N N = r N. Hence the result
follows by proposition (16). m

Now, we have the following result.
Proposition (18): Let N be a finitely generated submodule of an R-module M such that

annN = annM. If N is a coprime R-module, then M is a coprime R-module.
R R

Proof: Letr e R and r ¢ agnM. Since N is a coprime module and agnN = agnM, r N =

N. But N is a finitely generated submodule, so by [25, p.50], there exists » ' € R such that (1 —
rr')N=0.Hence(l —rr')M =0, and so M =r M. Therefore M is coprime. m

Note that, the condition ann N = annM can not dropped from the previous proposition
R R

as the following example shows:
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(E) in Z¢ as Z-module is coprime module, and ann (2) =37 # alzln(Z6) = 6Z.
z
However Z¢ is not coprime Z-module, see (Rem. and Ex. 3 (8)).

Next, we can give the following proposition.
Proposition (19): Let N be a finitely generated submodule of M and aEnM is a prime ideal.

If N is a coprime module, then agnM =[N I:{ M].
Proof: Letr e [NI;M], then » M < N. It is clear that r € agnN orr ¢ agnN. Ifre arRlnN,
then » N = 0 and hence > M c r N = 0; that is o= agnM. Since agnM is prime, then r €

agnM. Ifre agn N, then » N = N because N is a coprime R-module.

On the other hand, N is finitely generated, there exists ' € R such that (1 — »7") N= 0,
see [25, p.50]. It follows that ¥ (1 —r7r" )M < (1—-rr')N=0.Thusr (1 —rr')M =0and
sor(l—rr'") e annM, which implies eitherre annM or (1 —rr') e annM.If (1 —rr")

R R R

e annM, then M = » M < N which is a contradiction. Thus » € annM and so [N : M] =
R R R

annM.
R

Recall that an R-module M is said to be Noetherian if every submodule of M is finitely
generated, see [19, Prop. 6.2, p.75].
The following result is an immediate consequence of proposition (19).

Corollary (20): Let M be a Noetherian R-module such that aEnM is a prime ideal of R, if

every submodule of M is a coprime R-module, then M is coprime.
Recall that a submodule N of an R- module M is called primary if for every reR, xeM

such that rxeN, then either xeN or r ,'N RM] ={seR;s" e [N}:{M] for some n €

Z.},see[20].
We know that every prime submodule is primary; however the converse is not true in

general. The following result shows that the two concepts are equivalent in the class of
coprime modules.

Proposition (21): Let M be a coprime R-module, let N be a proper submodule of M, then N
is primary iff N is prime.

Proof: Let N be a primary submodule of M, since M is coprime, then ann M = [N 1:1 M], so
R

[N : M] is a prime ideal, hence by [14, Prop. 2.10, ch.1], we have N is prime. m
R

S.Yassem in [5] gave the following result. We give its proof for the sake of
comp leteness.

Recall that a submodule N of an R-module M is called secondary submodule if for
each reR,the homothety r* on N is either surjective or nilpotent, where r* is nilpotent if there
exist keZ+ such that (r*) =0,see[21].

Proposition (22): Let N be a submodule of an R-module M such that M is P-second (P-
coprime), then N is P-secondary iff N is P-second (P-coprime).

Proof: (=) Since M is P-coprime, aIRmM = P. Suppose that N is P-secondary, then P

= ,annN .Thus P = ’annN =ann M. To prove N is P-second. Since N is a submodule of
R R R
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M, then P = ann < annN, but annN c 'annN = P which is a prime ideal. Thus by
R R R R

proposition (7) N is a second submodule with P = algn N; that is N is P-second submodule.

The converse is obvious by [15, Rem. and Ex. 1.2.2 (1)]. m

Recall that if M is an R-module, then J(M) is the intersection of all maximal submodules
of M (if exist) or J(M ) =M if M has no maximal submodule, see [12, Definition 9.1.2,p.214].

The following result appeared in [27]. However we give another proof.

Proposition (23): If M is a coprime R-module and JMM) # M, then R isa coprime ring,
where R =R/ annM.
R

Proof: Since J(M) # M, then there exists a maximal submodule N of M. By [15, Propo. 2.2,
ch. 1] the ideal [N : M] is a maximal ideal of R. Since M is coprime, then [N : M] = annM
R R R

and so agnM i1s a maximal ideal of R, so R =R/ agnM is a field. Thus R is a coprime

ring m

We note that the condition J(M ) # M in proposition (23) is necessary for example:

Q as Z-module is coprime module, which has no maximal submodule; that is J(Q) = Q
and Z is not a field.

Recall that an R-module M is called divisible if for each non zero divisor r of R, rM=M

,see[22].

The following proposition is an immediate result by theorem (7) and [16, prop 1.1.7].
Proposition (24): Let M be an R-module, then the following statements are equivalent:
1. M is a coprime R-module.

2. M isadivisible R/ agnM-module.
3. rM =M forevery r € R\ agnM.
4. IM =M for every ideal ] & agnM.
5. WM) = aEnM.

Note that statement (5) in proposition (24) was given as definition of coprime module by
Abuihlial J. in [7].He defined that an R-submodule N of M is a coprime submodule if for each
homothety » * on M / N is either zero or surjective. Then it is clear that M is a coprime R-
module if and only if (0) is a coprime submodule. By combining this result with theorem (7)
we have the following corollary.

Corollary (25): Let M be an R-module, then the following statements are equivalent:
1. M is a coprime R-module.

2. M is a second submodule of itself.

3. (0) is a coprime submodule of M.

The following remark is clear.

Remark (26): Let N be a proper submodule of an R-module M. Then N is a coprime
submodule of M iff M / N is a coprime R-module.

The following result follows by Remark (26) and Note (8).

Corollary (27): Let N be a proper submodule of an R-module M, if N is a coprime
submodule then ann (M / N) is a prime ideal.
R
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Recall that an R-module M is called divisible if for each non zero divisor r of R, rM=M,
see [22].
Now, we list some consequences of proposition (24).
Corollary (28): Every faithful coprime R-module is divisible.
Proof: 1s clear. m
Remark (29): Every divisible module over an integral domain is faithful coprime.
By combining corollary (28) and remark (29) we get:
Corollary (30): Let M be a module over an integral domain R. Then M is a faithful coprime
R-module iff M is a divisible R-module.
Recall that an R-module M is called principally injective if for every principal ideal I of
R and every monomorphism f; [ —— M, there is a homomorphism g: R—— M such that g /;
= f, see [23].
Proposition (31): Let M be a module over an integral domain R. Then the following
statements are equivalent:
1. M is a faithful coprime R-module.
2. M is a divisible R-module.
3. M is a principally injective R-module.
Proof: (1)—— (2) follows by corollary (30).
(2) > (3) follows by [12, Exc. 9(a), P.104].
Recall that an R-module M is said to be injective if and only if for any monomorphism f:
A —— B where A and B are any two R-modules and for any homomorphism g: A — M
there exists a homomorphism #: B—— M such that 4 o f= g, see [24, p.28].
Corollary (32): If R is PID and M is an R-module, then the following statements are
equivalent:
1. M is a faithful coprime R-module.
2. M is a divisible R-module.
3. M is an injective R-module.
Proof:
(1) < (2) follows by corollary (.30).
(2) < (3).By [26,Th2.8,P.35]. m
Corollary (33):
Let M be an injective module over an integral domain, then M is coprime.
Proof: Since every injective R-module is divisible by [26, Theorem 2.6, p. 33]. Hence the
result obtained by Remark (29). m
Recall that a module M over an integral domain is called torsion free if t(M) = 0, where
T M)={meM;ITreR r+0;rm=0},see[l9, p.45].
Under the class of torsion free modules over an integral domain, we have the following
result.
Proposition (34): Let M be torsion free over an integral domain R. Then the following
statements are equivalent:
1. M is a coprime R-module.
2. M is a divisible R-module.
3. M is an injective R-module.
Proof:
(1) & (2). Since M is torsion free, then M is faithful. Thus the result follows by
corollary (30).
(2) & (3) follows by [26, Th 2.7, p.34]. m
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Recall that an integral domain R is called a Dedekind domain if every non-zero ideal of
R is invertible and an ideal I is called invertible, when1 ' = {x € RgxI < R} and Sis the set
of non-zero divisors of R, then I - I =R, see [25].

Next, we prove the following.
Proposition (35): If R is a Dedekind domain and M is an R-module. Then the following
statements are equivalent:

1. M is a faithful coprime R-module.
2. M is a divisible R-module.

3. M is an injective R-module.

Proof:
(1)— (2) follows by corollary (30).
(2) & (3) follows by [24, Prop. 2.10, p.36]. m
Yassemi S. in [5] introduced the following result without proof. We give its proof for
sake of completeness.
Theorem (36): Let M be a prime R-module. The following statements are equivalent:
1. M is a coprime R-module.

2. M is an injective R/ann M -module.
R

Proof: Since M is a prime R-module, then by [2, Rem. and Ex. (1.1.3 (3)], all’{mM is a prime

ideal, so R is an integral domain and M 1is a torsion free R =R/ agnM-module, see [20],
[11].

(1)——> (2). Since M is a coprime R-module, then by corollary (10) M is a coprime R-
module. Hence by proposition (34) M is an injective R -module.

(2)——> (1). If M is an injective R -module, then by corollary (33) M is a coprime R-
module. Hence by corollary (10) M is a coprime R-module. m

Recall that an R-module M is called flat if Zﬂkak =0, where 4 € R, a, € M, then
k-1

n
there exist by, ..., b, € M and {u 4} CR, i=1,...,n,k=12,...,r suchthat D u, b, = a,
i=1

and Y u, A, =0, see[2].
k=1

The following theorem appeared in [18], we give the details of the proof for
completeness.

Recall that a subset A of an R-module M is called a basis of M, if A generates M and A is
R-linearly independent. M is said to be a fiee R-module, if M has a basis [25, p.190].
Theorem (37): Let M be a coprime R-module. Then the following statements are equivalent:
1. M is a prime R-module.

2. -M is a flat ﬁ-module, where f_{ =R/ aIRmM.
Proof: Since M is a coprime R-module, then R = R/agnM is an integral domain. Also by

proposition (24), M is a divisible R -module.
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(1) —> (2). Since M is a prime R-module, then M is a torsion free R -module, where
R =R/ agnM.

Now, we can show that M is a vector space over K = the total quotient field of R as
r +annM

follows: Let ———— e K, wherer,s e R, s ¢ annM.Let m e M, m=(s+ annM)
s +annM R R
. : T r +annM
m', for some m'e M since M is a divisible R -module. It follows that —— — - m = (r +
s +annM

annM)m'=rm' € M. Thus M is a vector space over K, so it has a basis. It follows thatM is
R

a free K-module, hence M is a flat K-module [25, Prop 1.26, p.22]. Then K is a flat I_{ -module

by [27, Ex. 20, p.319]. Thus by [19, Exc. 9(a), p.32] M is flat R -module.
(2)— (1). [The proof is different from the proof given in [29].

Since R is an integral domain, (0) is a prime ideal of R . Hence by [30, Corollary 4.9,

ch.1] (0) M=(0)isa prlme R -submodule of M. Thus (0) is a prlme R -submodule. Then it
is easy to check that (0) is a prime R-submodule of M and hence a prime R-module.

Finally, we turn our attention to the localization of coprime modules. First we have.
Proposition (38): Let M be a coprime R-module, then M is a coprime R g-module, where S
is a multip licatively closed subset of R.

Proof:

It follows by theorem () and [16, prop 1.1.20].

We notice that the converse of proposition (38) is not true as the following example
shows:

Let M be Z-module Z and S = Z — {0}, it is clear that S is a multiplicatively closed
subset of Z. Z ¢= Q and Q as Q-module is coprime, but Z is not coprime Z-module.

The following corollary follows immediately from proposition (38).
Corollary (39):

Let M be a coprime R-module,then M, is a coprime R,-module for any prime ideal P of R.

Next, we have the following result.

Corollary (40): Let M be a finitely generated R-module. Let S be a multiplicatively closed
subset of R. If M is P-coprime R-module, then Mg is Pg coprime Rg—module.

Proof: Since M 1s P-coprime, then M is coprime with agnM = P.Therefore by proposition

(2.1.38), M is coprime Rg—module.
Now, annM = [0 : M] =P, thatis [0 : M]s=Pgand by [28, p.152], [05: M] = Ps. Thus
R R R

a[r{m M = Pg. Therefore Mg is Pg-coprime Rg-module. m

S
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