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Abstract

Snakes, or active contours, are used extensively in computer vision and image
processing applications, particularly to locate object boundaries.

In this research, for the segmentation of anatomical structures in medical images three
approaches were implemented and compared like (original snake model, distance potential
force model and Gradient Vector Flow (GVF) snake model). We used Computed
Tomography image (CT) for our experiments.

Our experiments show that original snake model has two problems; first is the limited
capture range and the second is the poor convergence. Distance potential force model solved
only the first problem of original snake and failed with second problem. Gradient Vector
Flow (GVF snake) provides a good capture rang and a good convergence; therefore good
results are obtained where G VF snake could successfully segment the anatomical structures

from CT images.

Introduction

Snakes are energy-minimizing curves that are defined within an image and are
deformed by the effect of the internal energy of the curve itself and the external forces derived
from the image. Snakes are widely used in many applications, including edge detection [1],
shape modeling [2], se gmentation [3] and motion tracking,

There are two key difficulties with parametric active contour algorithms. First, the
initial contour which in general must be close to the true boundary or else it will likely
converge to the wrong result. The second problem is that active contours have difficulties
progressing into boundary concavities [4]. Then, Cohen and Cohen [5] proposed a distance
potential force model. The general idea behind this model is to have large external forces far
away from the boundaries of the object, thus increasing the capture range of the snake. Even

then, snakes based on this model fail to converge to concavities. The technique presented by
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Xu and Prince (GVF snake) addresses these issues and presents a new formulation for active
contour modeling [6,7]. In this research, we show the advantages of the GVF snake over the
traditional models where we discuss and compare between it and the original model and
distance potential force model. Also we discuss some results obtained by implementing and
testing the algorithms of these models.
Background

An original snake is a curve x(s) = [x(s), y(s)] s€[0,1] that moves through the spatial

domain of an image to minimize the energy functional

1
E=] Jal' @ +BR"Of [+ EexxoDds e (1)

where o and B are weighting parameters that control the snake’s tension and rigidity,

respectively, X'(s) and X" (s) denote the first and second derivatives of x(s) with respect to

s. The external energy function E _  is derived from the image so that it takes on its smaller

values at the features of interest, such as boundaries. Given a gray-level image /(x, y), viewed
as a function of continuous position variables (x, y), typical external energies are designed to

lead a snake toward step edges are:

E . (xy) =~ VI, y)|2 .......... @)

2
E .xy = '|V [GG x,y) * I(x, y)] | .......... 3)
where GG (x,y) is a two-dimensional Gaussian function with standard deviation G and V is

the gradient operator. If the image is a line drawing (black on white), then appropriate

external energies include [8]:

E .p)=1(y e @)

Ei(Xy)= GG ) * Iy, e )

It is easy to see from these definitions that larger G’s will cause the boundaries to
become blurry. Such large G’s are often necessary, however, in order to increase the capture

range of the snake.
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A snake that minimizes E must satisfy the Euler equation

ax"(s)-Bx'"(s)-VE_, =0 ... (6)

This can be viewed as a force balance equation
Fmt =+ Fext = 0 .......... (7)

where F, = ax"(s)-Bx'""(s) and F_= -VE_,. The internal force F, . discourages
stretching and bending while the external potential force F . pulls the snake toward the

desired image ed ges.
To find a solution to (6), the snake is made dynamic by treating x as function of time ¢

as well as S (i.e, x(s, t)). Then, the partial derivative of x with respect to ¢ is then set equal to

the left side of (6) as follows:

X, (8, )= ax"(s,0)-Bx"(s,0)-VE,, ®)

When the solution x(s, 7) stabilizes, the term x, (s, 7) vanishes and we achieve a solution of

(6). A solution to (8) can be found by discretizing the equation and solving the discrete

system iteratively.

Behavior of original Snake Model

An example of the behavior of an original snake is shown in Fig.(1). Fig(1a) shows a
256 x256-pixel line drawing of a V-char object (shown in black) having a boundary concavity
at the top. It also shows a sequence of curves (in red) depicting
The iterative progression of an original snake ( & = 0.05, =0, iteration no. = 100) initialized

outside the object but within the capture range of the potential force field. The potential force

field = - VE . where 6= 0 pixel is shown in Fig,(1b). We note that the final solution in

Fig (1a) solves the Euler equations of the snake formulation, but remains split across the
concave region.

The reason for the poor convergence of this snake is revealed in Fig.(lc), where a
close-up of the external force field within the boundary concavity is shown. Although the
external forces correctly point toward the object boundary, within the boundary concavity the

forces point horizontally in opposite directions. Therefore, the active contour is pulled apart
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toward each of the “fingers” of the V-char, but not made to progress downward into the
concavity. There is no choice of « and £ that will correct this problem.

Another key problem with original snake formulations, the problem of limited capture
range, can be understood by examining Fig.(1b). In this figure, we see that the magnitude (5)
will increase this range, but the boundary localization will become less accurate and distinct,

ultimately obliterating the concavity itself when becomes too large.

Behavior of Distance potential Force Model

Cohen and Cohen [5] proposed an external force model that significantly increases the
capture range of an original snake. These external forces are the negative gradient of a
potential function that is computed using a Euclidean distance map. Fig.(2) shows the
performance of a snake using distance potential forces. Fig.(2a) shows both the V-char object
(in black) and a sequence of contours (in red) depicting the progression of the snake from its
initialization far from the object to its final configuration. The distance potential forces shown
in Fig.(2b) have vectors with large magnitudes far away from the object, explaining why the
capture range is large for this external force model.

As shown in Fig(2a), this snake also fails to converge to the boundary concavity. This
can be explained by inspecting the magnified portion of the distance potential forces shown in
Fig.(2c). We see that, like traditional potential forces, these forces also point horizontally in
opposite directions, which pulls the snake apart but not downward into the boundary
concavity. We note that Cohen and Cohen’s modification to the basic distance potential
forces, which applies a nonlinear transformation to the distance map (5), does not change the
direction of the forces, only their magnitudes. Therefore, the problem of convergence to
boundary concavities is not solved by distance potential forces.

Gradient Vector Flow Field
The authors Xu and Prince present a solution to the problems by replacing the standard

external force F,,, in the force balance equation (7) with a static external force which does

not change with time or depend on the position of the snake itself. This new static external

force field F,,, = v(x, ») is called the Gradient Vector Field or G VF. Replacing the external

potential force —VE _, in (8) with v yields the following equation:

Xy (S, t) =ox"(s,)=-LxX"(s,1)+V e )

The parametric curve solving the above dynamic equation 1s termea as a GVF snake

[6].
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Steps of GVF Snake Formation
The process starts by calculating the edge map of the given image, using any edge

finding algorithm from the image processing literature.

fE=—F (y) e 10)

wherei= 1, 2, 3 or 4. The edge map has three important features relating to snake formation.
One, the gradient of this edge map V f has vectors pointing towards the edge, which is a
desirable property for snakes. Two, these vectors have large magnitude at the vicinity of the
edges. Three, in homogenous regions (regions with little variation in image intensity) V f is
almost zero, and therefore no information about nearby or distant edges is available.

The second and third features can be problematic when constructing an active contour.
To keep the first feature and nullify the effect of the latter two, the gradient map is extended
farther away from the edges and into homogenous regions using a computational diffusion
process.

The gradient vector flow field is defined as the vector fieldv (x, y)= (u

(x, v), v (x, ¥)) that minimizes the following energy functional:

8:_.. J. u (“i"‘“i +V§+Vi)+|vf|2|V'Vf|2dXdy .......... an

As can be seen, this is an example of variational formulation or reguiarization. The
parameter [l is a regularizing parameter which adjusts the tradeoff between the first and
second terms of the integrand and is set according to the level of noise present in the image.
Also, when the value of the edge gradient |Vf | is small, energy is dominated by the sum of
the partial derivatives of the gradient field, and yields a smooth field. On the other hand, when
|Vf | is large, the second term dominates the integrand. In this case, setting v = V[
minimizes the energy. Overall, this formulation transforms the gradient vector flow field by
keeping it equal to the edge gradient at the boundaries; it also keeps v slowly varying at the

homogenous regions of the image. Using the calculus of variations, it can be shown that the

GVF field can be found by solvingthe pair of Euler equations.

,quu—(u—fx)(fxz—rfyz):o .......... (12a)

szv-(v-fy)(f;+fy2):0 .......... (12b)
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Here, V2 is the Laplacian operator. These equations give us another intuition behind the
GVF formulation. It is noted that in homogeneous regions, the second term of both
equations (12a) and (12b) is zero (because the gradient of f (x, y) is zero). Therefore,
within these regions, u and v are each determined by Laplace's equation. This results in a type
of “filling-in” of information taken from the boundaries of the region.

Equations (12a) and (12b) can be solved numerically by treatingu and v as a function

of time. The resulting equations are:

ut(xayat) = ILlVZI/l (X,y,f) _(u(x’yat)_fx(xay))
(f, (%, y)? +fy (x5, 1)%) e (13a)
Vt (X,y,t) = ,uvzv (X,y,t) —(v(x,y,t)—fy(x,y))

.(fx (x, y)? +fy (x,1)%) (13b)

The steady-state solution of equation (13a) and (13b) yields the solution to the Euler
equations (12a) and (12b). An iterative solution can be set up for solving the equations above
[6].

Equations in (13a) and (13b) are known as generalized diffusion equations, and are
known to arise in such diverse fields as heat conduction, reactor p hysics, and fluid flow [9]. In

GVF snake, they are used to satisfy “fillingin” property.

The experiments of implementation of GVF snake algorithm
To see the key differences between G VF snake algorithm and the previous algorithms
(the original snake and distance potential force models); it was implemented on the same line

drawing V-char image, see Fig.(3). The parameters that should be given are £ and no. of
iteration for computing the (GVF field), and &, [ and the no. of iteration for (GVF snake);

and their values are shown in the table(1). Fig.(3b) reveals these several key differences.
First, the GVF field has a much larger capture range. A second observation is that the GVF
vectors are pointing somewhat downward into the top of the V-char, which should cause an
active contour to move farther into this concave region. Fig.(3a) shows the result of applying
a GVF snake. In this case, the snake was initialized farther away from the object than the

initialization in Fig(1a), and yet it converges very well to the boundary of the V-char.
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Implementation of Snakes models with Gray Level Images

In this section, we show how the original snake, distance potential force, and GVF
snake model, can be applied to medical image segmentation. In order to show the interests of
the segmentation by these snakes, we select a CT image of 256x256 pixels. The image
represents abdominal CT (slice of kidneys).

We imp lemented the mentioned above algorithms on the same CT image to show the
difference in performance between them. To reveal the efficiency of these snakes in
segmentation process, see the Fig.(4). In Figs.(4a, 4b) the original snake and distance
potential force model could not segment the left kidney properly from CT image in concave
region, in contrast with GVF snake where it could correctly evolves towards the desired
boundary of left kidney, see Fig.(4c). In our experiment, the values of parameters of original

snake, distance potential force, and GVF snake model are shown in table(2).

Key Issues

This work on the comparison between the performance of snakes models and using
their algorithms in segmentation process of anatomical structures from CT images using
active contours focuses on: Comparisons between the performance of original snake model,
distance potential force model and performance of G VF snake, and the candidate values of

snakes’ parameters. These phases are discussed in the following sections.

Comparison of Performance

The performance of the original snake model, distance potential force model and G VF
snake model is compared in terms of: Convergence to a Concave Region, and Insensitivity to
Initialization. With respect to convergence to concave region the comparison was explained
in details in the above sections but the insensitivity to initialization we discussed only one
case of initialization (outside the boundary of desired object), another example about the
outside initialization is shown in Fig.(5).
In this section, we discuss the initialization from inside the boundary of desired object. See
Fig.(6), Fig.(6a) is the original image of thyroid gland with a cystic and capsulated lesion. See
the initial curve in red color inside the cystic lesion. In Fig.(6b) the original snake model
couldn’t segment the cystic lesion while in Fig.(6¢, 6d) the distance potential force and GVF
snake model could segment the cystic lesion properly because they have large capture range.

In our experiment, the values of parameters are shown in table(3).
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The Candidate Values of Snakes’ Parameters

With respect to determine the appropriate values for tension, rigidity and the external
force weightings; we found that the acceptable range for each weight is as follows:

Increasing B will increase the rigidity of the model and would affect the shape even if
close to start with. We found that the rigidity weighting factor can be increased from 0 to 0.03
with almost the same results. Decreasing the tension weight causes the active contour to
follow the influence of the external force and lose its smoothness. The acceptable range that
we found for tension was from 0.02 to 0.08. For values over o= 0.08, the active contour must
be initialized close to the boundary; otherwise, the tension force tries to contract the model
and prevents the contour points from easily converging to the boundary.

Also we found that with parametric active contours the ratio of force weightings is
more important than the values themselves. For instance, if the force weighting is increased
four times, which indeed exceeds the previously recommended ranges for the force
weightings (i.e., external force =2.4, a = 0.2 & B =0.06), the active contour behaves as it does
for external force =0.6, o =0.05 & B =0.01, but it requires that the initial contour be closer to
the boundary.

With respect to regularization parameter [/, the acceptable range that we found for it
was from 0 to 0.2, but if the desired object has sharp corners the value of £ must be less than

0.1 else the final configuration has slightly rounder corners.

Conclusion

The gradient vector flow based active contour generation algorithm by Xu and Prince
was compared. The algorithm, along with an original snake generation algorithm and distance
potential force model were implemented on various images, both grayscale and line drawing
images. It was found that the algorithm succeeds in converging the active contour to boundary
concavities in both types of images. The drawback of the methods is its execution speed.
Inspite of its robustness to initialization and increased capture range, the algorithm takes a
long time to converge to object contours. With respect to snakes’ parameters, it is found that,
there is no way to compute or directly give the appropriate values for these parameters, but by
experiments and common sense. Also the appropriate values of these parameters of our

experiments were discussed in the section (The experiments With Force Weighting Factors).
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Table (1) Values of GVF snake parameters with V-char image

(1) GVF iteration (a) (B) Iteration No.
0.1 80 0.05 0 380

Table (2) Values of snake models’ parameters with CT of kidneys

Snake type GVF
(o) (1) . ) () (B) Iteration No.
1teration
Original 3 - - 0.5 0 80
Distance 2 - - 0.5 0 80
GVF 2 0.1 &0 0.05 0 50

Table (3) Values of snake models’ parameters with CT of thyroid gland and with inside

case of initialization.

Snake type GVF I .
(c) (u) | . (@) (S) teration
iteration No.
Distance potential 3 - - 0.01 0 23
GVF snake 0 0.1 80 0.01 0 23
Original snake 3 - - 0.05 0 50
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Fig.(1) (a) Convergence of a snake using (b) traditional potential forces, and (¢) shown

close-up within the boundary concavity.

(@) (b)
Fig.(2) (a) Convergence of a snake using (b) distance potential forces, and (c) shown

close-up within the boundary concavity.
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Fig.(3) (a) Convergence of a snake using (b) GVF external forces, and (c¢) shown close-

up within the boundary concavity.
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() (b) ©

Fig.(4) Segmenting the left kidney by (a) the original snake model and (b) the distance
potential force model which they failed in segmentation process in concave region of the
left kidney, (c) is the final snake of GVF model which could segment the left kidney
properly.

(@) (b) ©

Fig (5) Outside initial curve and S egmenting the cystic lesion of liver by (a) an original

snake, (b) a distance potential force snake, and (c) a GVF snake.
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(@) )

Fig.(6) (a)Original image of thyroid gland with a cystic and capsulated lesion with
inside case of initialization (b) an original snake, (c) a distance potential force snake, and

(d) a GVF snake.
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