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Abstract 

 Snakes, or active contours, are used extensively in computer vision and image 

processing applications, particularly to locate object boundaries.  

 In this research, for the segmentation of anatomical structures in medical images three 

approaches were implemented and compared like (original snake model, distance potential 

force model and Gradient Vector Flow (GVF) snake model). We used Computed 

Tomography image (CT) for our experiments. 

 Our experiments show that original snake model has two problems; first is the limited 

capture range and the second is the poor convergence. Distance potential force model solved 

only the first problem of original snake and failed with second problem. Gradient Vector 

Flow (GVF snake) provides a good capture rang and a good convergence; therefore good 

results are obtained where GVF snake could successfully segment the anatomical structures 

from CT images. 

 

Introduction 

 Snakes are energy-minimizing curves that are defined within an image and are 

deformed by the effect of the internal energy of the curve itself and the external forces derived 

from the image. Snakes are widely used in many applications, including edge detection [1], 

shape modeling [2], segmentation [3] and motion tracking. 

 There are two key difficulties with parametric active contour algorithms. First, the 

initial contour which in general must be close to the true boundary or else it will likely 

converge to the wrong result. The second problem is that active contours have difficulties  

progressing   into boundary concavities [4]. Then, Cohen and Cohen [5] proposed a distance 

potential force model. The general idea behind this model is to have large external forces far 

away from the boundaries of the object, thus increasing the capture range of the snake. Even 

then, snakes based on this model fail to converge to concavities. The technique presented by 
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 Xu and Prince (GVF snake) addresses these issues and presents a new formulation for active 

contour modeling [6,7]. In this research, we show the advantages of the GVF snake over the 

traditional models where we discuss and compare between it and the original model and 

distance potential force model. Also we discuss some results obtained by implementing and 

testing the algorithms of these models. 

Background 

 An original snake is a curve x(s) = [x(s), y (s)]  s [0,1] that moves through the spatial 

domain of an image to minimize the energy functional   
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where α  and β  are weighting parameters that control the snake’s tension and rigidity, 

respectively, )(x' s  and )(x" s  denote the first and second derivatives of x(s) with respect to 

s. The external energy function   E ext  is derived from the image so that it takes on its smaller 

values at the features of interest, such as boundaries. Given a gray-level image I(x, y), viewed 

as a function of continuous position variables (x, y), typical external energies are designed to 

lead a snake toward step edges are: 

 

                                            E ext (x, y) = - 2y)I(x,  

                             Eext (x, y) = -   2
  y)I(x,y)(x,G *

σ
  

where y)(x,G
σ

 is a two-dimensional Gaussian function with standard deviation σ and   is 

the gradient operator. If the image is a line drawing (black on white), then appropriate 

external energies include [8]: 

 

                                   E ext (x, y) = I (x, y) 

                                  E ext (x, y) = y)I(x,y)(x,G *
σ

 

        

 It is easy to see from these definitions that largerσ’s will cause the boundaries to 

become blurry. Such large σ’s are often necessary, however, in order to increase the capture 

range of the snake. 
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 A snake that minimizes E must satisfy the Euler equation 
 
 

                        0ext  E)('''x')(' x'α ss β  
 
 This can be viewed as a force balance equation 

 
                                            0FF extint   

 

where Fint =  )('''x')(' x'α ss  β  and Fext
= extE . The internal force Fint  discourages 

stretching and bending while the external potential force Fext  pulls the snake toward the 

desired image edges. 

 To find a solution to (6), the snake is made dynamic by  treating x as function of time t 

as well as S (i.e., x(s, t)). Then, the partial derivative of x with respect to t is then set equal to  

the left side of (6) as follows: 

 

                     x t (s, t) = ext E )('''x')(' x'α t s,t s, β    

 
When the solution x(s, t) stabilizes, the term x t (s, t) vanishes and we achieve a solution of 

(6). A solution to (8) can be found by discretizing the equation and solving the discrete 

system iteratively. 

 

Behavior of original Snake Model 

 An example of the behavior of an original snake is shown in Fig.(1). Fig.(1a) shows a 

256256-pixel line drawing of a V-char object (shown in black) having a boundary concavity 

at the top. It also shows a sequence of curves (in red) depicting. 

The iterative progression of an original snake ( = 0.05,  = 0, iteration no. = 100) initialized 

outside the object but within the capture range of the potential force field. The potential force 

field Fext
= extE where σ= 0 pixel is shown in Fig.(1b). We note that the final solution in 

Fig (1a) solves the Euler equations of the snake formulation, but remains sp lit across the 

concave region. 

 The reason for   the poor convergence of this snake is revealed in Fig.(1c), where a 

close-up of the external force field within the boundary concavity is shown. Although the 

external forces correctly point toward the object boundary, within the boundary concavity the 

forces point horizontally in opposite directions. Therefore, the active contour is pulled apart 

………. (6) 
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toward each of the “fingers” of the V-char, but not made to progress downward into the 

concavity. There is no choice of   and   that will correct this problem. 

 Another key problem with original snake formulations, the problem of limited capture 

range, can be understood by examining Fig.(1b). In this figure, we see that the magnitude (5) 

will increase this range, but the boundary localization will become less accurate and distinct, 

ultimately obliterating the concavity itself when becomes too large. 

 

Behavior of Distance potential Force Model 

 Cohen and Cohen [5] proposed an external force model that significantly increases the 

capture range of an original snake. These external forces are the negative gradient of a 

potential function that is computed using a Euclidean distance map. Fig.(2) shows the 

performance of a snake using distance potential forces. Fig.(2a) shows both the V-char object  

(in black) and a sequence of contours (in red) depicting the progression of the snake from its 

initialization far from the object to its final configuration. The distance potential forces shown 

in Fig.(2b) have vectors with large magnitudes far away from the object, explaining why the 

capture range is large for this external force model.  

 As shown in Fig.(2a), this snake also fails to converge to the boundary concavity. This 

can be explained by inspecting the magnified portion of the distance potential forces shown in 

Fig.(2c). We see that, like traditional potential forces, these forces also point horizontally in 

opposite directions, which pulls the snake apart but not downward into the boundary 

concavity. We note that Cohen and Cohen’s modification to the basic distance potential 

forces, which applies a nonlinear transformation to the distance map (5), does not change the 

direction of the forces, only their magnitudes. Therefore, the problem of convergence to 

boundary concavities is not solved by distance potential forces. 

Gradient Vector Flow Field 

 The authors Xu and Prince present a solution to the problems by replacing the standard 

external force Fext  in the force balance equation (7) with a static external force which does 

not change with time or depend on the position of the snake itself. This new static external 

force field Fext  = v (x, y) is called the Gradient Vector Field or GVF. Replacing the external 

potential force extE  in (8) with v yields the following equation: 

 

                        xt (s, t) = v )('''x')(' x'α t s,t s,  β    

 The parametric curve solving the above dynamic equation is termed as a GVF snake 

[6]. 

………. (9) 
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Steps of GVF Snake Formation 

 The process starts by calculating the edge map of the given image, using any edge 

finding algorithm from the image processing literature. 
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where i = 1, 2, 3 or 4. The edge map has three important features relating to snake formation. 

One, the gradient of this edge map  f has vectors pointing towards the edge, which is a 

desirable property for snakes. Two, these vectors have large magnitude at the vicinity of the 

edges. Three, in homogenous regions (regions with little variation in image intensity)  f  is 

almost zero, and therefore no information about nearby or distant edges is available.   

 The second and third features can be problematic when constructing an active contour.  

To keep the first feature and nullify the effect of the latter two, the gradient map is extended 

farther away from the edges and into homogenous regions using a computational diffusion 

process. 

 The gradient    vector   flow   field   is    defined    as   the    vector   field v (x, y)= (u  

(x, y), v (x, y)) that minimizes the following energy functional:  

     ε   μ dxdyff
yxyx

vvuu 222222 )(  -v  

 As can be seen, this is an example of variational formulation of regularization. The 

parameter μ  is a regularizing parameter which adjusts the tradeoff between the first and 

second terms of the integrand and is set according to the level of noise present in the image. 

Also, when the value of the edge gradient f  is small, energy is dominated by the sum of 

the partial derivatives of the gradient field, and yields a smooth field. On the other hand, when 

f  is large, the second term dominates the integrand. In this case, setting v =  f  

minimizes the energy. Overall, this formulation transforms the gradient vector flow field by 

keeping it equal to the edge gradient at the boundaries; it also keeps v slowly varying at the 

homogenous regions of the image. Using the calculus of variations, it can be shown that the 

GVF field can be found by solving the pair of Euler equations. 
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       Here, 2  is the Laplacian operator. These equations give us another intuition behind the 

GVF formulation. It is noted that in homogeneous regions,  the  second  term  of  both  

equations  (12a)   and (12b) is zero (because  the  gradient of  f (x, y) is zero). Therefore, 

within these regions, u and v are each determined by Laplace's equation. This results in a type 

of “filling-in” of information taken from the boundaries of the region. 

 Equations (12a) and (12b) can be solved numerically by treating u  and v as a function 

of time. The resulting equations are: 
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 The steady-state solution of equation (13a) and (13b) yields the solution to the Euler 

equations (12a) and (12b). An iterative solution can be set up  for solving the equations above 

[6]. 

 Equations in (13a) and (13b) are known as generalized diffusion equations, and are 

known to arise in such diverse fields as heat conduction, reactor physics, and fluid flow [9]. In  

GVF snake, they are used to satisfy “filling in” property. 

 

The experiments of implementation of GVF snake algorithm   

 To see the key differences between GVF snake algorithm and the previous algorithms 

(the original snake and distance potential force models); it was implemented on the same line 

drawing V-char image, see Fig.(3). The parameters that should be given are   and no. of 

iteration for computing the (GVF field), and  ,   and the no. of  iteration for (GVF snake); 

and their  values  are shown in the table(1). Fig.(3b) reveals these several key differences. 

First, the GVF field has a much larger capture range. A second observation is that the GVF 

vectors are pointing somewhat downward into the top of the V-char, which should cause an 

active contour to move farther into this concave region. Fig.(3a) shows the result of applying 

a GVF snake. In this case, the snake was initialized farther away from the object than the 

initialization in Fig.(1a), and yet it converges very well to the boundary of  the V-char. 

 

………. (13a) 
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Implementation of Snakes models with Gray Level Images 

 In this section, we show how the original snake, distance potential force, and GVF 

snake model, can be applied to medical image segmentation. In order to show the interests of  

the segmentation by these snakes, we select a CT image of 256256 pixels. The image 

represents abdominal CT (slice of kidneys).  

 We implemented the mentioned above algorithms on the same CT image to show the 

difference in performance between them. To reveal the efficiency of these snakes in 

segmentation process, see the Fig.(4). In Figs.(4a, 4b) the original snake and distance 

potential force model could not segment the left kidney properly from CT image in concave 

region, in contrast with GVF snake where it could correctly evolves towards the desired 

boundary of left kidney, see Fig.(4c). In our experiment, the values of parameters of original 

snake, distance potential force, and GVF snake model are shown in table(2).  

 

Key Issues 

 This work on the comparison between the performance of snakes models and us ing 

their algorithms in segmentation process of anatomical structures from CT images using 

active contours focuses on: Comparisons between the performance of original snake model, 

distance potential force model and performance of GVF snake, and the candidate values of 

snakes’ parameters. These phases are discussed in the following sections. 

 
Comparison of Performance 

 The performance of the original snake model, distance potential force model and GVF 

snake model is compared in terms of: Convergence to a Concave Region, and Insensitivity to 

Initialization. With respect to convergence to concave region the comparison was explained 

in details in the above sections but the insensitivity to initialization we discussed only one 

case of initialization (outside the boundary of desired object), another example about the 

outside initialization is shown in Fig.(5).  

In this section, we discuss the initialization from inside the boundary of desired object. See 

Fig.(6), Fig.(6a) is the original image of thyroid gland with a cystic and capsulated lesion. See 

the initial curve in red color inside the cystic lesion. In Fig.(6b) the original snake model 

couldn’t segment the cystic lesion while in Fig.(6c, 6d) the distance potential force and GVF 

snake model could segment the cystic lesion properly because they have large capture range.  

In our experiment, the values of parameters are shown in table(3).  

 



IBN AL- HAITHAM J. FO R PURE & APPL. SC I.            VOL.23 (1) 2010 
 

The Candidate Values of Snakes’ Parameters 

 With respect to determine the appropriate values for tension, rigidity and the external 

force weightings; we found that the acceptable range for each weight is as follows: 

 Increasing β will increase the rigidity  of the model and would affect the shape even if 

close to start with. We found that the rigidity weighting factor can be increased from 0 to 0.03  

with almost the same results. Decreasing the tension weight causes the active contour to 

follow the influence of the external force and lose its smoothness. The acceptable range that 

we found for tension was from 0.02 to 0.08. For values over α = 0.08,  the active contour must 

be initialized close to the boundary; otherwise, the tension force tries to contract the model 

and prevents the contour points from easily converging to the boundary.  

 Also we found that with parametric active contours the ratio of force weightings is 

more important than the values themselves. For instance, if the force weighting is increased 

four times, which indeed exceeds the previously recommended ranges for the force 

weightings (i.e., external force =2.4, α = 0.2 & β =0.06), the active contour behaves as it does  

for external force =0.6,  α = 0.05 & β =0.01, but it requires that the initial contour be closer to  

the boundary. 

 With respect to regularization parameter  , the acceptable range that we found for it 

was from 0 to 0.2, but if the desired object has sharp corners the value of   must be less than 

0.1 else the final configuration has slightly rounder corners. 

 

Conclusion 

 The gradient vector flow based active contour generation algorithm by Xu and Prince 

was compared. The algorithm, along with an original snake generation algorithm and distance 

potential force model were implemented on various images, both grayscale and line drawing 

images. It was found that the algorithm succeeds in converging the active contour to boundary 

concavities in both types of images. The drawback of the methods is its execution speed. 

Insp ite of its robustness to initialization and increased capture range, the algorithm takes a 

long time to converge to object contours. With respect to snakes’ parameters, it is found  that, 

there is no way to compute or directly give the appropriate values for these parameters, but by 

experiments and common sense. Also the appropriate values of these parameters of our 

experiments were discussed in the section (The experiments With Force Weighting Factors). 
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Table (1) Values of GVF snake parameters with V-char image 

( ) GVF iteration ( ) ( ) Iteration No.  

0.1 80 0.05 0 380 

 

Table (2) Values of snake models’ parameters with CT of kidneys 

Snake type 
( ) ( ) 

GVF 

iteration 
( ) ( ) Iteration No.  

Original 3 - - 0.5 0 80 

Distance 2 - - 0.5 0 80 

GVF 2 0.1 80 0.05 0 50 

 
 

Table (3) Values of snake models’ parameters with CT of thyroid gland and with inside 

case of initialization. 

Snake type 
( ) ( ) 

GVF 

iteration 
( ) ( ) Iteration 

No.  

Distance potential  3 - - 0.01 0 23 

GVF snake 0 0.1 80 0.01 0 23 

Original snake 3 - - 0.05 0 50 
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                              (a)                                                         (b)                                                  (c) 

Fig.(1)  (a) Convergence of a snake using (b) traditional potential forces, and (c) shown 

close-up within the boundary concavity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

                          (a)                                                          (b)                                               (c) 

Fig.(2)  (a) Convergence of a snake using (b) distance potential forces, and (c) shown 

close-up within the boundary concavity. 

 

 

 

 

 

 

 

 

                             (a)                                                         (b)                                               (c) 

Fig.( 3)  (a) Convergence of a snake using (b) GVF external forces, and (c) shown close-

up within the boundary concavity. 
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                 (a)                                                               (b)                                                               (c) 

 
Fig.(4) Segmenting the left kidney by (a) the original snake model and (b) the distance 

potential force model which they failed in segmentation process in concave region of the 

left kidney, (c) is the final snake of GVF model which could segment the left kidney 

properly. 

 

 

 

 

 

 

             

 

 

 

 

 

         

           

 

                        

(a)                                                 (b)                                                 (c)                                           

  
Fig (5) Outside initial curve and Segmenting the cystic lesion of liver by (a) an original 

snake, (b) a distance potential force snake, and (c) a GVF snake. 
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Fig.(6)  (a )Original image of thyroid gland with a cystic and capsulated lesion with 

inside case of initialization (b) an original snake, (c) a distance potential force snake, and 

(d) a GVF snake. 
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  لمنحنیات النشیطةمقارنة بین أداءِ نماذجِ ا

  

ن  فائزه عبد الجبار علوا

د،  أبن الهیثم-كلیة التربیه  ،قسم الحاسبات    جامعة بغدا

  

  

 الخلاصة

                من اجل  یة الحاسوب ومعالجة الصور الرقمیةفي تطبیقات روؤ  الافاعي او المنحنیات النشیطة تستخدم بكثرة    

          .ایجاد حدود الاجسام

ة نماذج من ولأجل تقطیع التراكیب التشریحیة من الصور الطبیة تم استخدام و مقارنة ثلاث، في هذا البحث  

اً  أنموذج الافعى العاملة و، ذج القوى الكامنة للمسافةأنمو ، نموذج الافعى الاصلي أو التقلیديأمثل  المنحنیات النشیطة وفق

ة فلنوع الصور الطبیه التي استخدمت في تجارب هذا البحث  أما بالنسبة .لتدفق متجهات المیل هي الصور المقطعی

  ). CT(بالكومبیوتر

،  یمتلك مدى التقاط محدودالاولى انه  المشكلة، الاصلي یعاني من مشكلتیننموذج الافعى أتجارب البحث أظهرت بأن  

. للاشكال التعامل مع التغیرات التوبولوجیة مثل الزوایا الحادة والمناطق المقعرة انه لایستطیع التكیف او والمشكلة الثانیة

مشكله الاولى لا أنموذج القوى الكامنة للمسافةكذلك  ة نتمكن من حل ال موذج الافعى الاصلى لكنه فشل في حل المشكل

ط كبیر جداً یمتد الى حدود الصورة مما یجعل تمتلك مدى التقاف وفقاً لتدفق متجهات المیل أما الافعى العاملة .الثانیة

ت وعبر حدود الجسم المطلوب كذلك ی، من داخل ،  بعیدة، یبة یمكن ان تكون قر  الافعى الابتدائیة مكنها التكیف للتغیرا

ب  إذ، تم الحصول على نتائج جیدة لذلك، التبولوجیة تمكنت الافعى العاملة وفقا لتدفق متجهات المیل من تقطیع التراكی

  .  التشریحیة بنجاح من الصور المقطعیة


