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Abstract 

      In this paper we study and design two feed forward neural networks. The first 
approach uses radial basis function network and second approach uses wavelet basis function 
network to approximate the mapping from the input to the output space. The trained networks 
are then used in an conjugate gradient algorithm to estimate the output. These neural networks 
are then applied to solve differential equation. Results of applying these algorithms to several 
examples are presented.     

 
1. Introduction 
         Neural networks are connectionist models proposed in an attempt to mimic the function 
of the human brain. A neural network (Ann) consists of a large number of simple processing 
elements called neurons (or nodes) [1], [2]. Neurons implement simple functions and are 
massively interconnected by means of weighted interconnections. These weights, determined 
by means of a training process, determine the functionality of the neural network. The training 
process uses a training database to determine the network parameters (weights).  
      The functionality of the neural network is also determined by its topology. Most networks 
have a large number of neurons, with the neurons arranged in layers. In addition to input and 
output layers, there are usually layers of neurons that are not directly connected to either the 
input or the output, called hidden layers. The corresponding nodes are referred to as hidden 
nodes. Hidden layers give the network the ability to approximate complex, nonlinear 
functions.  

The advantages of using neural networks are numerous: neural networks are learning 
machines that can learn any arbitrary functional mapping between input and output, they are 
fast machines and can be implemented in parallel, either in software or in hardware [3]. In 
fact , the computational complexity  of Ann's is polynomial in the number of neurons used in 
the network. Parallelism also brings with it the advantages of robustness and fault tolerance. 
Efficient learning algorithms ensure that the network can learn mappings to any arbitrary 
precision in a short amount of time. Furthermore, the input-output mapping is explicitly 
known in a neural network and gradient descent procedures can be used advantageously to 
perform the inversion process.  
2. Radial Basis Function Neural Networks  
         Radial basis function neural networks (RBFNN) are a class of networks that are widely 
used for solving multivariate function approximation problems [5],[4]. An RBFNN consists 
of an input and output layer of nodes and a single hidden layer. Each node in the hidden layer 
implements a basis function and the number of hidden nodes is equal to the number of points 
in the training database. The RBFNN approximates the unknown function that maps the input 
to the output in terms of a basis function expansion, with the functions, G(x, xi) as the basis 
functions. The input-output relation for the RBFNN is given by : F(x)  
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         Where H is the number of basis functions used, y = (y1, y2, …, yM )
T is the output of the 

RBFNN, x is the test input, xj is the center of the basis function and are the expansion 
coefficients or weights associated with each basis function. Each training data sample is 
selected as the center of a basis function. Basis functions G(x, xi) that are radially symmetric 
are called radial basis functions. Commonly used radial basis functions include the Gaussian 
and inverse multiquadrics.  
3. Wavelet Basis Function Neural Networks (WBFNN) 
            The wavelet transform is a time-frequency transform that provides both the frequency 
as well as time localization in the form of a multi resolution decomposition of the signal [6]. 
Consider a square - integrable function F(x) and let Vm be the vector space containing all 
possible projections of F at the resolution m where 2m is the sampling interval at this 
resolution [7]. Obviously, as m increases, the number of samples at that resolution decreases 
and the approximation gets coarser. Now, consider all approximations of F at all resolutions. 
The associated vector spaces are nested as follows :   …. V2  V1  V0  V-1  V-2 ….       
due to the fact the finer resolutions contain all that required information to compute the 
coarser approximation of the function F. It is also obvious that as the resolution decreases, the 
approximation gets coarser and contains less and less information. In the limit, it converges to 
zero: 

                        




 
m

mmm VVlim =  {0}    

On the other hand, as the resolution increases, the approximation has more information and 
eventually converges to the original signal : 

                        




 
m

mmm VVlim       is dense in L2(R).  

If ф(x) denotes the scaling function, then Vm = linear span {фmk , k Z}   

where фmk = m2 ф( 2-m
 x - k ) , ( m, k ) Є Z

2
 is the translated version of ф(x). 

       Since the family of functions { фmk(x) | ( m , k ) Є Z2 } forms an orthonormal basis for Vm 

, F can be written as : 

Fm(x) = 


k

smk фmk(x)     where      smk =  




F(x) фmk(x) dx 

is the projection of F onto the orthonormal basis functions фmk(x) . 
Further, suppose Wm is the orthogonal complement of Vm in Vm-1. Then  

Vm-1  =  Vm ⊕ Wm  with  Vm ┴ Wm …….(1) 

     The (m-1)th approximation can be written as the sum of the projections of F onto Vm and 
Wm  . Equivalently, the difference in information ( called the dilates ) between the m

th
 and (m-

1)th approximations is given by the projection of F onto Wm. Mallat [8] shows that there exists 
a unique function, called the wavelet function, whose translates and dilates form an 
orthonormal basis for the space Wm. In other words, the detail of F at the mth  resolution is 
given by  

                    Dm F(x)   = 


k

dmk ψmk(x)   , where ψ(x) is the wavelet ، 

Ψmk(x) = m2 ψ(2-m x – k) , ( m , k )  Z2 are the translates and dilates of ψ(x)  and   

dmk  = 




F(x)ψmk(x)dx   are the projections of F onto Wm . 

Further from (1), we get Fm-1(x) = Fm(x) + 


k

dmkψmk(x). 

Since the V-spaces form a nested set of subspaces, F can be written as : 
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            F(x) = 


k

sk,-∞ фk,-∞(x) + 


l




k

dlk ψlk(x) …………….(2) 

 
      where l indexes over the different resolutions. In practice, the limits of summation are 
chosen to be finite. The architecture network consists of an input and an output layer with a 
single hidden layer of nodes [9]. The hidden layer nodes are grouped by resolution level. We 
have as many groups as resolution levels, with the number of basis functions at each 
resolution . The input-output relation is given by : 

         yl  =  


1

1

H

j

wlj фj ( x ,cj )  +  
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L

n 1




nK

k 1

 wlkn ψnk( x ,cnk )  ………….(3) 

        where L is the total number of resolutions H1 is the number of scaling functions used at 
the coarsest resolution, Kn is the number of wavelet functions used at resolution n, ci is the 
center of the corresponding basis function and wlj is the weight of the interconnection 
connecting the j

th
 hidden node to the l

th
 output node. The weights are determined in a similar 

manner to the weights in the RBFNN described earlier.  
          The primary advantage of using wavelet basis functions is orthonormality. 
Orthonormality of wavelets ensures that the number of basis functions required to 
approximate the function F is minimum. The second advantage is that wavelets are local basis 
functions ( localization property  of wavelets ). The multi resolution approximation ( MRA ) 
using wavelets allows the distribution of basis functions based on the resolution required in 
different parts of the input space. In addition, the ability  to add details at higher resolutions as 
more data become available allows the network to learn in incremental fashion and allows the 
user to control the degree of accuracy of the approximation. Equation (2) formulated for 
scalar inputs can be extended for multidimensional inputs. The corresponding 
multidimensional scaling functions and wavelets are formed by tensor products of the 1-
dimensional scaling functions and wavelets. Consider the 2- dimensional case with x = (x1, 

x2)
T. Denoting the 1-D scaling function by ф(x) and the 1-D wavelet by ψ(x) one can show 

that the 2-dimensional scaling function is given by :  
 ф ( x1, x2 )  =  ф(x1) ф(x2) . 
Similarly, the corresponding wavelet functions are given by : 
ψ

 1
(x1, x2) = ф(x1) ψ(x2) 

ψ
 2(x1, x2) = ψ(x1) ф(x2)  

ψ 3(x1, x2) = ψ(x1) ψ(x2) 
      For an accurate approximation, all the four basis functions must be used at each hidden 
node. Kugarajah and Zhang have shown that, under certain conditions, a radial basis scaling 
function ф(║x - xi║) and wavelet ψ(║x-xi║) Constitute frame, and that these functions can be 
used in place of the entire N-dimensional basis, resulting in a savings in storage and execution 
time while minimally affecting the accuracy of the approximation. The operation of WBFNN 
is summarized in the following steps :  
Step 1. Basis Function Selection: A significant issue in wavelet basis function neural 
networks is the selection of the basis functions. The wavelet family used in the WBFNN 
depends on the form of the function F that must be reconstructed. Even though this function is 
usually unknown, some important details may be obtained by inspecting the problem at hand. 
For instance, classification usually calls for a discontinuous or quantized function F where all 
the input data is to be mapped onto one of a few classes. In such cases, discontinuous 
wavelets, may be used. Continuous wavelets may be used to approximate smoother functions.  
Step 2. Center Selection: The location and number of basis functions are important since they 
determine the architecture of the neural network.               Centers at the first (or coarsest) 
resolution are selected by using the K-means algorithm. Each center at successive resolutions 
is computed as the mean of two centers at a lower resolution.  
 

 

IHJPAS



  

IBN AL- HAITHAM J. FO R PURE & APPL. SC I.         VO L.23 (2) 2010 
 
Step 3. Training : Training the network involves determining the expansion coefficients 
associated with each resolution level. These coefficients are determined by using a matrix 
inversion operation, similar to the operation performed in RBFNN . The centers can also be 
dynamically varied during the training process till the error in the network prediction falls 
below a predetermined level. Over-fitting by the network can be avoided by pruning the 
centers one by one until the network performs at an acceptable level on a blind test database. 
In this study however, no optimization is performed after center selection.  
Step 4. Generalization: In this step, the trained WBFNN is used to predict the output for a 
new test signal using (3).  
4. Applications 
4.1. FFNN Results Using RBFNN  
  The RBFNN was tested using a first order Bessel function J1(t)  : 
    t

2 
y

″   
+ t y

′   
+ ( t

2
 - 1

 
) y = 0

    
, t  [0, 20]          

4.2. FFNN Results Using WBFNN  

       Two resolution levels, with 10 centers at the coarsest resolution were selected using the 
K-M eans clustering algorithm. No optimization was performed after center selection to 
reduce the number of basis functions used. The scaling function used was a Gaussian function 
: ф (x ,c) = exp(-║x- c║/ 2σ 

2
 ) where c and σ are the center and spread of the scaling 

function, respectively. The wavelet functions : 
     ψ (x ,c) = ((1-║x- c║

2 2m ) / 2σ 2 ) exp(-║x-c║22 m / 2σ 2 ) . 
Where c and σ are the center and spread of the wavelet function respectively m is a parameter 
controlling the dilation of the wavelet, whose value depends on the resolution level. Figure 2 
shows the performance of the WBFNN as a forward model 
  Comparing the results in Figures1and 2, we see that the WBFNN is a better forward model 
than the RBFNN and the error surface can be illustrated by figure 3. 
4.3. Comparing of performance RBFNN and WBFNN. 

FFNN was tested using van der pol equation: x″ + (x
2 –1) x′ + x = 0 , x1(0) = 1 ,  x2(0) = 1Use 

RBFNN and WBFNN with σ = 0.01  

5. CONCLUSIONS  AND FUTURE WORK 

         This study proposed the use of ANN based forward models in iterative algorithms used 
for solving multivariate function approximation problems. Two different types of neural 
networks RBFNN and WBFNN used to represent the forward model. These forward models 
were used, in iterative scheme, or in combination with an inverse model in feedback 
configuration, to solve the inverse problem. This type of FFNN consists offers several 
advantages over numerical models in terms of both implementation of gradient calculations in 
the updates of the parameters and overall computational cost. One drawback of these 
approaches is that the forward models are not accurate when the input signals are not similar 
to those used in the training database. From all above study the results of applying the FFNN 
to one- and two-dimensional problems were presented. Also we study the comparison 
between RBFNN and WBFNN to obtain better results. In general, our numerical result shows 
that it is difficult to RBFNN specify which algorithms will converge faster. 

1- For the large problem we treat, we recommend that: try first the RBFNN. 

2- Our numerical results shows that, in approximation of the numerical solution of ODE 

or PDE using RBFNN gives better accuracy than using RBFNN for small dimensional 

problems.  
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3- The approximation of function offers the alternative approach of adopting a general 

purpose optimization method to solve the relevant non - linear approximation problem in 

feed forward propagation procedures. 

4- For high-dimensional problems, RBFNN are potentially valuable, since they may be 

based on a limited number of centers, which do not have to be placed on a grid throughout 

the domain . 

         Another issue that needs to be examined in future work is related with the sampling of 

the grid points that are used for training. In the above experiments the grid was constructed in 

a simple way by considering equidistant points. It is expected that better results will be 

obtained in the case where the grid density  will vary during training according to the 

corresponding error values. This means that it is possible to consider more training points at 

regions where the error values are higher. 

          Developing an upper bound for the error ║ t(x)  a(x)||  O(m), require further 

study, where m is the number of basis function and  is the dimension of the domain. 

    As the dimensionality increases, the number of training points becomes large. This fact 

becomes a serious problem for methods that consider local functions around each grid point 

since the required number of parameters becomes excessively large and, therefore, both 

memory and computation time requirements become extremely high, and require further 

study. 
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(a) Performance of the RBFNN 

 

                   

(b) Results of iterative RBFNN                                       

Figure (1) : RBFNN forward model . 

 

(a) performance of the WBFNN . 
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(b) Results of  iterative WBFNN . 
 

Fig. (2) : WBFNN forward model   
 

 

Fig.e 3. compare between RBFNN and WBFNN from figure (1) & (2) 

 

(a) 
 

 
(b) 

 
Fig. 4. performance of RBFNN: (a) result  (b) error 
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                                Figure  5. Result an d error of WBFNN .  

                            (a)                                                                 (b) 
Figure 6. compare between RBFNN and WBFNN (a) results (b) error 
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 2010) 2( 23المجلد   مجلة ابن الھیثم للعلوم الصرفة والتطبیقیة            
  

دوال الأساس الشعاعـیة و دوال  يالشبكات العصبیة ذحـول المقارنة بین 

  الأساس المتذبذبة

      دـیـد رشـیـبد المجـرید عـو  تغ  قـیـوفـمد تـي محـلمى ناج   

  جامعة بغداد ، كلیة التربیة ابن الهیثم ،قسم الریاضیات 

  

  الخلاصه

والثـاني  RBFNNالأول یسـتخدم  .التغذیــة التقدمیــة  ين ذاین صـناعیتییتضمن هذا البحث دراســة وتصـمیم شـبكتان عصـبیت

ـاء  WBFNNیســتخدم  ــم دربنــا الشــبكات باســتخدام خوارزمیـــة  المــدخلاتلتقریــب تطبیــق مــن فضــ ـاء المخرجــات ثـ إلــى فضـ

ثم طبقنا تلك الشبكات على بعـض الأمثلـة لحـل معـادلات بة المطلو للحصول على المخرجات  C Gالتدریب المرتد من النوع 

 .     رضنا نتائج تلك التطبیقات تفاضلیة ومن ثم ع
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