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Abstract 

Scheduling problems have been treated as single criterion problems until recently. 
Many of these problems are computationally hard to solve three as single criterion problems. 
However, there is a need to consider multiple criteria in a real life scheduling problem in 
general. 

In this paper, we study the problem of scheduling jobs on a single machine to minimize 
total tardiness subject to maximum earliness or tardiness for each job. And we give algorithm 
(ETST) to solve the first problem (p1) and algorithm (TEST) to solve the second problem (p2) 
to find an efficient solution. 

  
1 Introduction 

Since the beginning, most of the work in scheduling problems has concentrated on a 
single criterion. Hence numerous optimal and approximation algorithms have been developed 
for single-criterion problems [1]. 

However, scheduling problems often involve more than one aspect and therefore require 
multiple criteria analysis. Desp ite their importance, little attention has been given to multiple 
criteria scheduling problems. This is due to the extreme complexity  of these combinatorial 
optimization problems. Obviously, the situation becomes more complicated when more 
criteria are involved, unless the criteria are not in conflict with each other; roughly speaking, 
two criteria are not in conflict if a solution that performs well on one criterion is likely to 
perform well on the other criterion [2]. 

The simplest multiobjective problems focus only on two criteria. In this paper, we let 
Lex(A,B) denotes a typical hierarchical problem where A and B are two performance 
measures. The notation Lex(A,B) will be used to mean that we want to find a schedule that 
minimizes criterion B subject to the constraint that criterion A is optimal. These problems are 
also called secondary criteria problems where the secondary criterion B refers to the less 
important criterion. 

Throughout this paper, we use the three field notation scheme  /  /  introduced by 
Graham et.al., [3] to denote the scheduling problem under consideration. 

Some of the performance measures often used in scheduling are, sum of completion 
times ( ci )total earliness ( Ei ) total tardiness ( Ti ) maximum lateness, Lmax = Max{Li}, 
Li = ci – di , maximum earliness, Emax = Max {Ei}, Ei =                  Max{di – ci,0}, and 
maximum tardiness, Tmax = M ax {Ti}, Ti = M ax{ ci – di,0}. 

Let f = ci is the primary criterion and let g  {Ei, Ti, Lmax,Emax} the secondary 
criterion, then the problem 1//Lex(f,g) can be solved in polynomial time, where Lex means 
Lexicographical (hierarchical) optimization. A detailed complexity  analysis of hierarchical 
problems can be found in Lee and Vairaktarkis, [4]. 

 
 

 



IBN AL- HAITHAM J. FOR PURE & APPL. SCI.            VOL.23 (1) 2010 
 
Note that the hierarchical scheduling problem 1//Lex(f,g) is a special case of the 

simultaneous minimization 1//F(f,g) problem, where F is an increasing composite function of 
the two criteria and hence if 1//Lex(f,g) is NP-hard then 1//F(f,g) is also NP-hard. 

Vanwassenhove and Gelder, [5] develop on algorithm to generate all the efficient 
solutions for 1//F(ci,Lmax) problem in polynomial time. 

Hoogeveen, [6] shows that all efficient solutions for two different cost functions, fmax, 
gmax can be generated in polynomial time, where fmax = M ax{fi(ci) and fi is any non-decreasing 
function of ci}. Note that Tmax is a special case of fmax. For detailed surveys on multicriteria 
scheduling, the reader can refer to Gupta and Kyparisis, [7], Fryet al., [8], Nagar et al., [9] and 
Hoogeveen, [10]. 

In the literature, there are three approaches that are applicable to scheduling problems, 
[11]. 
C1. Minimizing a weighted sum of the subcriteria and convert it to a single criterion problem. 
C2. Regard some subcriteria as constraints which must be satisfied and optimize others. 
C3. Generate all efficient (non-dominated) schedules then allow the decision maker to make 

explicit trade-off between these schedules. 
In this paper, we will study some problems which belong to class C2. 
        The work of Smith [12], on minimizing total completion time subject to no tardy jobs is 

the earliest work in this area. Recently [13] work on Lex (Cmax, ci) for the two 
machine flow shop  problem. 

       In this paper, we address the following single machine multicriteria scheduling problem. 
A set of n independent jobs have to be scheduled on a single machine, which can handle only 
one job at a time. The machine is assumed to be continuously available from time 0 on words. 
Job Ji(1,…,n) requires a given positive processing time pi and should be completed at a given 
due data di. A schedule defines for each job Ji its completion time Ci such that the jobs do not 
overlap in their execution. The cost of completing Ji at time Ci (i = 1, …,n) is measured by k 

(k = 3) functions k
if  (k = 1, …,K); two of these functions are assumed to be non-decreasing 

in the job completion time; that is the value of 
k
if (Ci) (i = 1, …,n; k = 1, …,K) does not 

decrease if we increase Ci and one of them (Emax) is not regular in our study. Hence for the 
hierarchical minimization problem, the performance criteria f 1,…,f k are indexed in order of 
decreasing importance. In this paper, first f 1 is minimized. Next, f 2 is minimized subject to 
the constraint that the schedule has minimual f

 1
 value. If necessary, f

 3
 is minimized subject to 

the constraint that values for f
 1 and f 2 are equal to the values determined in the previous step. 

If we use the three field notation, this problem is denoted by 1//Lex(f 1, f 2,f 3), where f 1, f 2 and 
f
 3
  {Emax,Tmax,Ti}. 

        The organization of this paper is as follows. In section 2, we provide the notation and 
basic concepts of the problems. In section 3, the proposed mathematical formulations for the 
problems is given. Also the proposed algorithms and the computational experience are given. 
Finally, in section 4 some of the conclusions that can be drawn from this research are 
outlined. 
2 Notation and basic concepts 

The following notation will be used: 
n = number of jobs. 
pi = processing time of job i. 
di = due data of job i. 
ci = completion time of job i. 
Ei = M ax {di – ci,0}; the earliness of job i. 
Emax = M ax {Ei}; the maximum earliness. 
Ti = M ax { ci – di,0}; the tardiness of job i. 
Tmax = M ax {Ti}; the maximum tardiness. 
Ti = the total tardiness. 
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        We will use the following scheduling rules in this paper 
EDD: jobs are sequenced in non-decreasing order of due dates, (this rule is known to 
minimize Lmax and Tmax) [14]. 
MST: jobs are sequenced according to non-decreasing order of minimum slack times, i.e. 
non-decreasing order of si = di – pi, (this rule is known to minimize Emax subject to no 
machine idle time) [14]. 

 
Property 1, (4): 
        If for some criterion f the unconstrained problem 1//f is NP-complete then the 
hierarchical problem 1//Lex(f,g) is NP-complete for any criterion g. 
 
          A feasible schedule  is pareto optimal, or non-dominated (efficient), with respect to 
the performance criteria f and g if there is no feasible schedule  such that both f()  f() and 
g()  g(), where at least one of the inequalities is strict [17]. 
 
        Suppose that we have selected the two performance criteria, say f and g, that we want to 
take into account [15]. If one performance criterion, say f, is for more important than the other 
one, then an obvious approach is to find the optimum value with respect to criterion f, which 
we denote by f*, and choose from among the set of optimum schedules for f the one that 
performs best on g, such an approach is called hierarchical optimization or Lexicographical 
optimization: in this type, we have to minimized the value of the more important criterion f, 
where in the second stage, the second criterion g is a minimized subject to the additional 
constraint that f = f*, where the criterion mentioned first in the argument of Lex is the more 
important one [16]. 
 
 

3 Three-criteria hierarchical problems and algorithms 
In this section, we present the mathematical forms and the algorithms for generating 

solutions when one of the three criteria Emax, Tmax, Ti is more important than the others. 
These hierarchical problems are also called secondary criteria problems where the secondary 
criterion refers to the less important criterion. 

Formulation for multicriteria problems are similar to that for the single criterion 
problems with additional constraints requiring that the optimal value of the primary objective 
is not violated. Let us consider the formulations for bicriterion problems. 
There are two parts of the formulations  
          primary objective function 
          subjected to: 
                     primary problem constraints 
          secondary objective function 
          subjected to: 
                     secondary problem constraints 
                     primary objective function value constraints 
                     primary problem constraints 
Hence, the bicriterion problem is solved in two steps. First, we optimize the primary criterion 
followed by the optimization of the secondary criterion subject to the primary objective value. 
This formulation in this paper can be generalized to the multicriteria problems. Hence we 
present the mathematical forms of four multicritria problems. 

Let the first problem (P1) is denoted by 1//Lex(Emax,Tmax,Ti). 
The multicriteria scheduling problem (P1) is defined as: 
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        For this problem (P1), Emax is the most important objective function and should be 
optimal for any feasible schedule. 
        The following algorithm (ETST) gives the best possible solution for (P1). 
Algorithm (ETST) 

Step (1): Solve the problem 1//Emax to find 
max

E (MST) , by using MST rule. 

Step (2): Let N ={1,2,…,n} be the set of unscheduled,  =  be the sequence for the 
scheduled jobs and set k = 1. 

Step (3): For each job j  N calculate a start time rj, rj = M ax{dj – pj – 
max

E (MST) ,0}. 

Step (4): Find a job j*  N with minimum 
j

r   such that 
j

r    Ck – 1 and if there exists a tie 

choose the job j* with smalled due date 
j

d   (where Ck – 1 is the completion time 

of a job in position k – 1 and C0 = 0 where k = 1). Assigin job j* in position k of  
(i.e.  = (,(k))). 

Step (5): Set k = k + 1 and N = N – {j*}, if N =  go to step (6) otherwise go to step (4). 
Step (6): For the schedule jobs of  = ((1), …,(n)) calculate Emax, Tmax, Ti and stop. 
 
        Let the second problem (P2) denoted by 1//Lex (Tmax,Emax,Ti). 
The multicriteria scheduling problem (P2) is defined as: 

n

i
i 1

2

max max

max max max

Min T

s.t. (P )
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        For this problem (P2) Tmax is the most important objective function and should be 
optimal for any feasible schedule. 
 
        The following algorithm (TEST) gives the best possible solution. 

Step (1): Solve the problem 1//Tmax to find 
max

T (EDD)
, by using EDD rule. 

Step (2): Let N ={1,2,…,n} be the set of unscheduled jobs,  =  be the sequence for the 

scheduled jobs and let k = n and 
n

j
j 1

t P


 . 

Step (3): For each job j  N calculate a dead line 
j

d , 
j

d  = dj + 
max

T (EDD)
 and          Sj = 

dj – Pj. 

Step (4): Find a job j*  N such that 
j

d    t, if there exists a tie choose the job with largest 

slack time 
j

s  . 
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Step (5): Set t  = t – 
j

p  , k = k – 1, N = N – {j*} and assigin job j* in position k of  (i.e.  = 

((k),)), if N =  go to step (6), else go to step (4). 
Step (6): For the schedule jobs of  = ((1), …,(n)) calculate Tmax, Emax, Ti. 
 

        Now consider the following (P3) and (P4) problems 1//Lex(
n

j
j 1

T


 ,Emax, Tmax) and 

1//Lex(
n

j
j 1

T


 ,Tmax,Emax) respectively. 

max

n n
3

i j
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max max max
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        Since the unconstrained total tardiness problem (1//Ti) is NP-complete in ordinary 
sence (Due and lenug) [17]. 
Consequently by property  1, the corresponding hierarchical optimization problems (P3) and 
(P4) are NP-complete. 
This means that all the hierarchical problems with primary criterion //Ti (total tardiness) are 
strongly NP-complete because 1//Ti problem is NP-complete. 
3.1 Computational results 
        We first present how tests problem can be randomly generated. The processing time Pi 
is uniformly distributed in the interval [1,10]. The due date di are uniformly distributed in the 

interval [p(1 – TF – 
RDD

2
), P(1 – TF + 

RDD

2
); where 

n

i
i 1

P P


 , depending on the 

relative range of due date (RDD) and on the average tardiness factor (TF). For both 
parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0, are considered. For each selected value of n, 
one problem was generated for each of five values of parameters producing five problems for 
each value of n. 
       The complete enumeration (CE), (ETST) and (TEST) algorithms were tested by coding 
them in matlab7 and running Pentium IV at 2800MHZ with Ram 512MB computer. It is well 
known that (CE) algorithm gives optimal solutions which are tested on problems with size 
(3,4,5,6,7,8) for problems (p1) and (p2) respectively. For problems (with n > 8) that are not 
solved optimality  by (CE) algorithm because the execution time exceeds 30 minutes, the near 
optimal solution for these unsolved problems was found by our algorithms (ETST) and 
(TEST) respectively. 
 
        Tables (1) and (2) show the results for problems (p1) and (p2) obtained by (CE), (ETST) 
and (TEST) algorithms respectively. 
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              Table (1) The Performance of (CE) and (ETST) algorithm for Problem (p1) 

n no. of ex. 
(CE) Alg. Opt.val. (ETST) Alg. 
E T ST E T ST 

3 

1 0 11 14 0 13 22 
2 0 12 14 0 12 14 
3 0 8 9 0 8 9 
4 0 15 22 0 15 22 
5 0 2 3 0 2 3 

4 

1 5 4 4 5 4 4 
2 0 6 15 0 6 15 
3 0 12 20 0 12 20 
4 0 9 14 0 9 14 
5 0 11 13 0 18 31 

5 

1 0 9 27 0 9 27 
2 0 19 44 0 19 49 
3 0 14 34 0 14 39 
4 0 5 10 0 5 10 
5 0 11 20 0 13 28 

6 

1 0 9 24 0 11 44 
2 0 13 32 0 14 47 
3 0 8 27 0 9 29 
4 0 23 52 0 27 94 
5 0 9 36 0 9 40 

7 

1 0 30 104 0 30 127 
2 0 13 52 0 13 59 
3 0 16 53 0 16 70 
4 0 32 113 0 32 121 
5 0 18 60 0 18 60 

8 

1 0 56 204 0 56 204 
2 2 19 45 2 21 59 
3 0 21 93 0 21 107 
4 0 24 105 0 24 113 
5 11 0 0 11 0 0 

 
                       where E = Emax, T = T max and ST =  
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Table (2) The Performance of (CE) and (TEST) algorithm for Problem (p2) 

n no. of ex. 
(CE) Alg. Opt.val. (TEST) Alg. 
T E ST T  E ST 

3 

1 11 0 14 11 6 13 
2 12 0 14 12 0 14 
3 8 0 9 8 0 9 
4 15 0 22 15 0 23 
5 2 0 3 2 2 3 

4 

1 4 5 4 4 17 4 
2 6 0 15 6 0 15 
3 12 0 20 12 0 28 
4 9 0 14 9 0 16 
5 11 0 13 11 2 20 

5 

1 9 0 27 9 7 34 
2 19 0 44 19 2 45 
3 14 0 34 14 6 37 
4 5 0 10 5 0 12 
5 11 0 20 11 8 28 

6 

1 9 0 24 9 5 13 
2 13 0 32 13 12 34 
3 8 0 27 8 8 27 
4 23 0 52 23 3 52 
5 7 0 19 7 4 20 

7 

1 30 0 104 30 3 109 
2 13 0 52 13 5 51 
3 16 0 53 16 11 59 
4 32 0 113 32 3 124 
5 18 0 60 18 0 69 

8 

1 56 0 204 56 0 235 
2 19 2 45 19 23 74 
3 21 0 93 21 7 84 
4 24 0 105 24 4 117 
5 0 11 0 0 25 0 

 
Where E = Emax, T = Tmax and ST = Ti 

 
 
        Table (1) and table (2) show (12) problems, (ETST) algorithm give the optimal 
solution from (30) problems to (p1). Also (TEST) algorithm gives optimal solution to (3) 
problems from (30) problems to (p2). 
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Table (3) The Performance of (ETST) and (TEST) algorithm for Problems (p1) and (p2) 
respectively 

 

n no. of ex. 
(CE) Alg. Opt.val. 

time 
(TEST) Alg.  

time 
E T ST T E  ST 

100 

1 179 0 0 1.12647036 0 752 0 0.74858 
2 2 363 16796 0.11953005 358 229 18668 0.20988 
3 0 503 25959 0.26942652 502 53 24211 0.27051 
4 143 11 39 0.13075979 11 608 392 0.10606 
5 0 338 17138 0.21426937 338 211 16958 0.38384 

200 

1 319 45 1103 0.62734318 45 1258 5263 0.2926 
2 17 360 27598 0.37524356 360 808 49141 0.50081 
3 1 533 53662 0.66433407 531 499 59127 0.69638 
4 339 0 0 0.49009237 0 1465 0 0.30636 
5 0 558 61168 0.66032482 552 531 60117 0.67944 

300 

1 20 208 32476 0.62758178 207 1287 49249 0.54612 
2 47 107 18968 0.57598413 166 1444 37619 0.59398 
3 0 1165 172992 1.19656747 1163 493 166785 2.6832 
4 0 1334 205262 1.23098989 1334 330 188096 2.76682 
5 98 17 56 0.37925246 14 1626 2183 0.55104 

400 

1 640 0 0 1.15046111 0 2806 0 1.459 
2 89 86 7540 0.91170198 86 1087 25689 0.67944 
3 0 2026 415782 6053897226 2025 223 383686 6.1565 
4 447 39 782 3.12389536 39 2556 9151 0.98865 
5 11 231 36156 0.86524203 230 2016 71836 1.03529 

500 

1 279 160 17036 2.15753627 160 2215 57682 1.42939 
2 20 568 106437 2.15590147 561 2098 206248 2.42633 
3 0 2520 632436 7.90571441 2520 278 610651 10.1674 
4 0 1677 432201 5.54392977 1675 1104 445034 6.5482 
5 0 2425 617604 8.8913358 2424 266 578491 9.92506 

600 

1 659 71 2065 2.26473278 71 3400 27707 2.03721 
2 7 323 96218 3.15671991 323 2854 158962 2.20158 
3 0 1332 423809 5.56702833 1331 1966 490221 5.63833 
4 0 2306 672134 9.97153693 2305 967 690366 13.2039 
5 0 1328 378006 4.46032238 1328 1959 490624 7.67578 

700 

1 0 1880 616513 9.87129298 1879 1869 718391 13.4187 
2 69 69 12836 1.15406665 69 3025 35145 1.18976 
3 1 1895 674347 8.92376825 1895 1844 735889 1.22257 
4 0 1896 663143 7.90197834 1896 1882 753681 14.2562 
5 780 7 11 2.28917996 7 4592 1668 5.30548 

800 

1 45 1349 497654 7.66431661 1349 3062 715853 11.0311 
2 0 2634 1032408 14.5439547 2632 1748 1087947 20.0141 
3 0 3062 1193374 17.8258838 3060 1308 1197792 23.4111 
4 449 53 1151 3.28143218 53 4731 27641 2.28639 
5 0 3813 1531458 2.61768531 3811 421 1473201 28.971 

 
where E = Emax, T = Tmax and ST = Ti 
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لتصغیر مجموع التأخیر مشروطة الى أكبر  مسائل الجدولة للمعاییر المتعددة

  تبكیر أو تأخیر

  

 
  هند فالح عبداالله

 جامعة بغداد ،كلیة التربیة ابن الهیثم  ,قسم الریاضیات 

 

  

  خلاصةال
  

صعبة الحل لثلاثة مسائل  ل تعدالعدید من هذه المسائ. مسائل الجدولة مسائل معیار مفردة حتى الآن عدت        

  .الحیاة الحقیقیة على العمومر المعاییر المتعددة في مسائل معیاریة مفردة مع ذلك هنالك حاجة الى اعتبا

ر  nمسائل جدولة  درستفي هذا البحث          من الاعمال على ماكنة واحدة لتصغیر مجموع التأخیر مشروطة الى اكب

لحل  (TEST)وخوارزمیة ،  (p1)لحل المسألة الاولى  (ETST)وقد اعطیت خوارزمیة  ،تكبیر أو تأخیر لكل عمل

  .لایجاد حل كفوء (p2)المسألة الثانیة 

 
 


