Synthesis and Characterization of SnS: 3%Bi thin Films for Photovoltaic Applications

Main Article Content

Bushra K.H. Al-Maiyaly
Duaa Muneer Sadiq

Abstract

In the present article, Nano crystalline SnS and SnS:3% Bi thin films were fabricated using thermal
evaporation with 400±20 nm thickness at room temperature at a rate deposition rate of 0.5 ±0.01nm
/sec then annealing for one hour at 573 K for photovoltaic application. The prepared samples were
characterized in order to investigate the structural, electrical, morphological, and optical properties
using diverse techniques. XRD and SEM were recorded to investigate the effect of doping and
annealing on structural and morphological possessions, respectively. XRD showed an SnS phase
with polycrystalline and appeared to form an orthorhombic structure, with the distinguish trend
along the (111) grade, varying crystallite size from (19.45-25.95) nm after doping and annealing.
SEM investigations of these films show extremely fine nanostructures and demonstrated excellent
adhesion, after Bi-doping, the nanostructures remained identical with a little change. UV/Visible
studies were made in the range of wavelength (300-1100) nm to calculate the optical constants for
these films. These measurements revealed a high value of the absorption coefficient and decrease
the optical energy gap values from (1.85 -1.6) eV after doping with 3% Bi. The characterization of
these films it can be chosen in the application of solar cells. On the other hand, the optical properties
of SnS films have been enhanced by Bi-doping.

Article Details

How to Cite
Synthesis and Characterization of SnS: 3%Bi thin Films for Photovoltaic Applications. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 113-123. https://doi.org/10.30526/36.2.2930
Section
Physics

How to Cite

Synthesis and Characterization of SnS: 3%Bi thin Films for Photovoltaic Applications. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 113-123. https://doi.org/10.30526/36.2.2930

References

References

Kawano, Y.; Chantana, J.; Minemoto, T. Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance, Curr. Appl.Phys, 2015, 15, 897–901

Schneikart, A.; Schimper, H. J.; Klein, A.; Jaegermann, W.; Efficiency limitations of thermally evaporated thin-film SnS solar cells, J. Phys. D Appl. Phys. 2013, 46, 305109.

Vidal. J.; Lany. S.; D’Avezac. M.; Zunger. A.; Zakutayev. A. Francis, Band structure, optical and defect physics of photovoltaic semiconductor SnS, J. Appl. Phys. Lett., 2012, 100, 032104.

Steinmann, V.; Jaramillo, R.; Hartman, K.; Chakraborty, R.; Brandt, R. E.; Poindexter, J. R.;

88% Efficient Tin Sulfide Solar Cells using Congruent Thermal Evaporation, Adv. Mater.,

, 26, 7488–7492.

Balakart, H. R.; Santhanam, A.; Aslam, K.; A. M.; El-Toni, A. A.; Ansari, A. I.; Mohd, S. S. A. Performance analysis of SnS thin films fabricated using thermal evaporation technique for

photodetector applications, Optik, 2021, 244, 167460.

Rohini, N.; Mohan, O. G.; Daza, A. Rosa, G. A.; ALizbeth, E.; Santana, A.; Beristain, M. T.; Nair, P. K. Thin films of p-SnS and n-Sn2S3 for solar cells produced by thermal processing of chemically deposited SnS, journal of Alloys and Compounds, 2022, 892, 5, 162036.

Hasan, B. A. Dieletectric Properties of Vacuum Evaporated SnS Thin Films. Int. J. Nanotechnoly. Adv. Mater, 2013, 1, 87–93.

Gode, F.; Guneri, E.; Baglayan. O.; Effect of tri-sodium citrate concentration on structural,

Optical and electrical properties of chemically deposited tin sulfide films. Appl. Surf. Sci. 2014,318, 227–233.

Messaoudi, M.; Aida, M. S.; Attaf,N.; Bezzi, T.; Bougdira, J.; Medjahdi, G. Deposition of tin(II) sulfide thin films by ultrasonic spray pyrolysis: Evidence of sulfur exo-diffusion., Mater. Sci. Semicond. Process. 2014, 17, 38–42.

Tanuševski, A.; Poelman, D.; Optical and photoconductive properties of SnS thin films

prepared by electron beam evaporation, Sol. Energy Mater. Sol. Cells, 2003, 80, 297–303.

Sousa, M. G.; Da Cunha, A. F.; Fernandes, P. A. Annealing of RF-magnetron sputtered SnS2 precursors as a new route for single phase SnS thin films. J. Alloys Compd., 2014, 592,80–85.

Sinsermsuksakul, P.; Heo, J.; Noh, W.; Hock, A. S.; Gordon. R. G. Atomic Layer Deposition of Tin Monosulfide Thin Films. Adv. Energy Mater, 2011, 1,1116–1125.

Kim, J. Y.; George. S. M. Tin Monosulfide Thin Films Grown by Atomic Layer Deposition Using Tin 2, 4-Pentanedionate and Hydrogen Sulfide, J. Phys. Chem., 2010, 114, 17597–17603.

Hosein, K. Optoelectronic properties of In-doped SnS thin films, Ceramics International, 2019. 45, 1, 334-345.

Sánchez-Juárez, A.; Tiburcio-Silver, A.; Ortiz, A. Fabrication of SnS2/Sn Sheterojunction thin film diodes by plasma-enhanced chemical vapor deposition, Thin Solid Films, 2005,480, 4, 452–456.

Sebastian, S.; Kulandaisamy, I.; Arulanantham, M. S.; Valanarasu, S.; Kathalingam, A.; JesuJebathew, A.; Mohd, S.; Karunakaran, M. Influence of Al doping concentration on the opto‑electronic chattels of SnS thin films readied by NSP, Optical and Quantum Electronics, 2019, 51,100, 1-16.

Gowri, M. A.; Dhanapandian,S.; Chellasamy, M.; Thaiyan, M. Effect of doping concentration on the properties of bismuth doped tin sulfide thin films prepared by spray pyrolysis, Materials Science in Semiconductor Processing, 2014, 17, 138–142.

Victoria, E.; González-Flores, R.; Neendoor, M. R.; Ballinas-Morales, M. T.; Nair, S.

Thin film solar cells of chemically deposited SnS of cubic and orthorhombic structures, Thin

Solid Films, 2019, 672, 62-65.

Fadavieslam, M. R. Effect of Ag doping on physical properties of tin-sulfide thin films for optoelectronic applications prepared by spray pyrolysis, Applied Physics, 2018, 124, 9.

Liu, L.; Yu. L.; Li, X. L.;. Wang, Z.; Liang, Q. Structure and Optical Properties of Cu-doped SnS Thin Films Prepared by PLD, Chinese Journal of Luminescence, 2015, 36, 11, 1311-1319.

Santhosh, K.; Kumar, A.; Gowri, M.; Chaogang, L.; Mahalingam, T.; Dhanapandian, S. Influence of Cu dopant on the optical and electrical properties of pray deposited tin sulphide thin films, Vacuum, 2016,128, 226-229.

Hanan, K. H.; Bushra, H. H.; Bushra, K. H.; Auday, H. S. Influence of Cu Dopant on SnS Thin Films Characterization and Enhance Efficiency of p-SnS:Cu /n-Si Solar Cell, Key Engineering Materials, 2021,886, 66-74.

Khudayer,I. H.; Hussien, B.H. Study of Some Structural and Optical Properties of AgAlSe2 Thin Films, Ibn Al-Haitham J. for Pure & Appl. Sci., 2016,29 , 2, 41-51.

Ghuzlan, S. A.; Bushra, K. H.; Al-Maiyaly Annealing effect on characterization of nano crystalline SnSe thin films prepared by thermal evaporation, AIP Conference Proceedings,2019, 2123, 020074.

Bushra, H. H.; Hanan, K. H. Comparative Study for Optoelectronic Properties of Zn (Te, Se) Solar Cells, NeuroQuantology, 2020,18, 5, 77.

Bushra, K. H. AL-Maiyal; Bushra, H. H.; Hanan, K. H. GROWTH AND OPTOELECTRONIC PROPERTIESOF p-CuO:Al/n-Si HETEROJUNCTION, Journal of Ovonic Research, 2020, 16, 5.

Bushra, K. H. AL-Maiyal Study the Effect of Thickness on the Electrical Conductivity and Optical Constant of Co3O4 Thin Films, Ibn Al-Haitham J. for Pure & Appl. Sci, 2013, 26, 1.

Bushra, K. H. AL-Maiyal The Influence of Annealing and Doping by Copper on Electrical Conductivity of CdTe Thin Films, Ibn Al-Haitham J. for Pure & Appl. Sci, 2015, 28, 3.