Effect of the Synthesis Time on Structural Properties of Copper Oxide

Main Article Content

karrar alsoltani
Khalid H. Harbbi

Abstract

The structural properties of the CuO nanopowder oxide prepared reflux technique
without any templates or surfactant, using copper nitrate hydrate (Cu(NO)3 3H2O) in deionized
water with aqueous ammonia solution are reported. The Xrd analysis data and processing in origin
pro program used to get FWHM and integral width to study the effect of different synthesis times
was studied on the structural properties. It was found that values of crystal sizes are 17.274nm,
17.746nm, and 18.560nm, the size of nanoparticles is determined by Halder-Wagner, and 15.796
nm, 15.851nm, and 16.52nm, were calculated by Size-Strain Plot (SSP) method. The Sample was
considered to determine physical and microstructural parameters such as internal strain,
dislocations density, surface area, and the number of unit cells and then to compare the results.

Article Details

How to Cite
Effect of the Synthesis Time on Structural Properties of Copper Oxide . (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 181-190. https://doi.org/10.30526/36.2.3024
Section
Physics

How to Cite

Effect of the Synthesis Time on Structural Properties of Copper Oxide . (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 181-190. https://doi.org/10.30526/36.2.3024

References

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y.; WANG, Xun.; et al. A general strategy for nanocrystal synthesis. Nature, 2005, 437.7055 121-124.‏

Grigore, M. E.; Biscu, E. R.; Holban, A. M.; Gestal, M. C.; Grumezescu, A. M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals, 2016, 9.4, 75.‏‏

Narayan, H.; Alemu, H.; Jaybhaye, S. Copper Oxide Nanoparticles: Synthesis and Characterization. Proceedings of the AATMC-2018, Kalyan, India, 2018, 43-47.‏

Dindar, A.; Kim, J. B.; Fuentes-Hernandez, C.; Kippelen, B. Metal-oxide complementary inverters with a vertical geometry fabricated on flexible substrates. Applied Physics Letters, 2011, 99.17, 172104.‏

Sahay, R.; Sundaramurthy, J.; Kumar, P.S.; Thavasi, V.; Mhaisalkar, S.G.; Ramakrishna, S. Synthesis and characterization of CuO nanofibers, and investigation for its suitability as blocking layer in ZnO NPs based dye sensitized solar cell and as photocatalyst in organic dye degradation. Journal of Solid State Chemistry, 2012, 186, 261-267.‏

Gao, S.; Yang, S.; Shu, J.; Zhang, S.; Li, Z.; Jiang, K. Green fabrication of hierarchical CuO hollow micro/nanostructures and enhanced performance as electrode materials for lithium-ion batteries. The Journal of Physical Chemistry C, 2008, 112.49, 19324-19328.‏

Comanac, A.; de’Medici, L.; Capone, M.; Millis, A. J. Optical conductivity and the correlation strength of high-temperature copper-oxide superconductors. Nature Physics, 2008, 4.4, 287-290.‏

Guajardo-Pacheco, M. J.; Morales-Sánchez, J. E.; González-Hernández, J.; Ruiz, F. Synthesis of copper nanoparticles using soybeans as a chelant agent. Materials letters, 2010, 64.12, 1361-1364.‏

Rajagopalan, S.; Koper, O.; Decker, S.; Klabunde, K. J. Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chemistry–A European Journal, 2002, 8.11, 2602-2607.‏

File, P. D.; JCPDS-ICDD, 12 Campus Boulevard. Newtown Square, PA, 2001, 247: 19073-3273.‏

Kamil, M. K.; Jasim, K. A. Investigation the Crystalline Size and Strain of Perovskite (YBa2Cu3O6) by variant method. Test Engineering and Management, 2020, 8719, 8719-8723.‏

sadiq Khasro, F.; Mahmood, H.S. Enhancement of Antibacterial Activity of Face Mask with Gold Nanoparticles. Ibn AL-Haitham Journal For Pure and Applied Sciences, 2022. 35(3), 25-31.‏

Kamil, M. K.; Jasim, K. A. Calculating of crystalline size, strain and Degree of crystallinity of the compound (HgBa2Ca2Cu3O8+ σ) by different method. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 072109.‏

Rabiei, M.; Palevicius, A.; Monshi, A.; Nasiri, S.; Vilkauskas, A.; Janusas, G. Comparing methods for calculating nano crystal size of natural hydroxyapatite using X-ray diffraction. Nanomaterials, 2020, 10.9: 1627.‏

Bouazizi, N.; Bargougui, R.; Oueslati, A.; Benslama, R. Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Advanced materials letters, 2015, 6.2: 158-164.‏

Langford, J. I. The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition. NIST Spec. Pub, 1992, 846: 110-126.‏

Antony, J.; Nutting, J.; Baer, D. R.; Meyer, D.; Sharma, A.; Qiang, Y. Size-dependent specific surface area of nanoporous film assembled by core-shell iron nanoclusters. Journal of Nanomaterials, 2006, 2006.‏

Musa, K. H. Investigating the Structural and Magnetic Properties of Nickel Oxide Nanoparticles Prepared by Precipitation Method. Ibn Al-Haitham Journal For Pure and Applied Sciences, 2022, 35(4).‏

RAMANATHAN, C.; SUBRAMANIAN, S.; VALANTINA, R. Structural and electronic properties of CuO, CuO2 and Cu2O Nanoclusters–a DFT approach. Materials science, 2015, 21.2, 173-178.‏

Gaber, A.; Abdel-Rahim, M. A.; Abdel-Latief, A. Y.; Abdel-Salam, M. N. Influence of calcination temperature on the structure and porosity of nanocrystalline SnO2 synthesized by a conventional precipitation method. Int J Electrochem Sci, 2014, 9.1, 81-95.‏

Singh, P.; Kumar, A.; Kaushal, A.; Kaur, D.; Pandey, A.; Goyal, R. N. In situ high temperature XRD studies of ZnO nanopowder prepared via cost effective ultrasonic mist chemical vapour deposition. Bulletin of Materials Science, 2008, 31.3, 573-577.‏