Synthesis and characterization of Silver nanoparticles: A review
Main Article Content
Abstract
In the current century, nanotechnology has gained great interest due to its ability to modify the size of metals to the nanoscale, which dramatically changes the physical, chemical, and biological characteristics of metals relative to their bulk counterparts. The approaches used to create nanoparticles (NPs) are physical, و chemical and وbiological. The shortcomings in physical and chemical synthesis approaches, such as the generation of toxic by-products, and energy consume as they require high temperature, pressure, power and lethal chemicals, contributed to an increased interest in biological synthesis by plants. Scientists have created a new filed called as "green nanotechnology" by fusing the idea of sustainability with nanotechnology. By substituting plant-based materials, it aims to reduce the amount of chemicals used in the manufacture of nanoparticles. Silver nanoparticles (AgNPs) attract the most attention due to their great stability and low chemical reactivity in comparison to other metals. The present review describes the fabrication of nanoparticles (NPs) via chemical and physical methods, as well as the use of plants, bacteria, and fungi. The current review also discusses certain analytical methods used to examine AgNPs, including UV-Vis spectroscopy, FT-IR, SEM, TEM, AFM, XRD, DLS, and zeta potential analysis
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Yazdanian, M.; Rostamzadeh, P.; Rahbar, M.; Alam, M.; Abbasi, K. Tahmasebi, E., Tebyaniyan, H., Ranjbar, R., Seifalian, A.; Yazdanian, A. The Potential Application of Green-Synthesized Metal Nanoparticles in Dentistry: A Comprehensive Review. Bioinorganic Chemistry and Applications, 2022.
Song, W.; Ge, S. Application of antimicrobial nanoparticles in dentistry. Molecules, 2019, 24,6, 1033.
Mathur, P.; Jha, S., Ramteke, S.; Jain, N.K. Pharmaceutical aspects of silver nanoparticles. Artificial cells, nanomedicine, and biotechnology. 2018, 46(sup1), 115-126. DOI: https://doi.org/10.1080/21691401.2017.1414825
Ahmed, H.B.; Attia, M.A.; El-Dars, F.M.; Emam, H.E. Hydroxyethyl cellulose for spontaneous synthesis of antipathogenic nanostructures:(Ag & Au) nanoparticles versus Ag-Au nano-alloy. International journal of biological macromolecules. 2019, 128, 214-229.
Ahmed, H.B.; Saad, N.; Emam, H.E. Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surfaces and Interfaces. 2021, 25, 101175.
Hiba, H.; Thoppil, J.E. Medicinal herbs as a panacea for biogenic silver nanoparticles. Bulletin of the National Research Centre. 2022, 46(1), 1-15.
Khatami, M.; Iravani, S.; Varma, R.S.; Mosazade, F.; Darroudi, M.; Borhani, F. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity. Bioprocess and biosystems engineering. 2019, 42(12), 2007-2014.
Tsuji, T.; Iryo, K.; Watanabe, N.; Tsuji, M. Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Applied surface science. 2002, (1-2), 80-85. DOI: https://doi.org/10.1016/S0169-4332(02)00936-4
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chemistry. 2011, 13(10), pp.2638-2650 DOI: https://doi.org/10.1039/c1gc15386b
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnology advances. 2013, 31(2), 346-356. DOI: https://doi.org/10.1016/j.biotechadv.2013.01.003
Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable materials and technologies. 2017, 13, 18-23. DOI: https://doi.org/10.1016/j.susmat.2017.08.001
Kojima, C.; Umeda, Y.; Harada, A.; Kono, K. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers. Colloids and surfaces B: Biointerfaces. 2010, 81(2), 648-651. DOI: https://doi.org/10.1016/j.colsurfb.2010.07.060
Mallick, K.; Witcomb, M.J.; Scurrell, M.S. Polymer stabilized silver nanoparticles: a photochemical synthesis route. Journal of materials science.2004, 39(14), 4459-4463. DOI: https://doi.org/10.1023/B:JMSC.0000034138.80116.50
Nabi, G.; Khalid, N.R.; Tahir, M.B.; Rafique, M.; Rizwan, M.; Hussain, S.; Iqbal, T.; Majid, A. A review on novel eco-friendly green approach to synthesis TiO2 nanoparticles using different extracts. Journal of Inorganic and Organometallic Polymers and Materials. 2018, 28(4), pp.1552-1564.. DOI: https://doi.org/10.1007/s10904-018-0812-0
Kharissova, O.V.; Dias, H.R.; Kharisov, B.I.; Pérez, B.O.; Pérez, V.M.J. The greener synthesis of nanoparticles. Trends in biotechnology. 2013, 31(4), pp.240-248. DOI: https://doi.org/10.1016/j.tibtech.2013.01.003
Sivakumar, T. A modern review of silver nanoparticles mediated plant extracts and its potential bioapplications. Int. J. Bot. Stud. 2021, 6(3), 170-175.
Rafique, M.; Sadaf, I.; Rafique, M.S. ; Tahir, M.B. A review on green synthesis of silver nanoparticles and their applications. Artificial cells, nanomedicine, and biotechnology. 2017, 45(7), 1272-1291. DOI: https://doi.org/10.1080/21691401.2016.1241792
Regiel-Futyra, A.; Kus-Liśkiewicz, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Kyzioł, A.; Stochel, G. Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC advances. 2017, 7(83), 52398-52413.. DOI: https://doi.org/10.1039/C7RA08359A
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of radiation research and applied sciences. 2015, 8(3), 265-275. DOI: https://doi.org/10.1016/j.jrras.2015.01.007
Vankar, P.S.; Shukla, D. Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Applied Nanoscience. 2012, 2(2), 163-168. DOI: https://doi.org/10.1007/s13204-011-0051-y
Prathna, T.C.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces. 2011, 82(1), 152-159. DOI: https://doi.org/10.1016/j.colsurfb.2010.08.036
Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z. ; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules. 2021, 26(4), 844.
Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med Aromat Plants. 2015, 4(196), 2167-0412.
Amid, A.; Salim, R.J.M.; Adenan, M.I. The factors affecting the extraction condition for neuroprotective activity of Centella asiatica evaluated by metal chelating activity assay. Journal of Applied Sciences. 2010, 10(10), 837-842. DOI: https://doi.org/10.3923/jas.2010.837.842
Rónavári, A.; Igaz, N.; Adamecz, D.I.; Szerencsés, B.; Molnar, C.; Kónya, Z. ; Pfeiffer, I.; Kiricsi, M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules. 2021, 26(4), 844.
Markus, J. ; Wang, D.; Kim, Y.J.;Ahn, S.; Mathiyalagan, R.; Wang, C.; Yang, D.C. Biosynthesis, characterization, and bioactivities evaluation of silver and gold nanoparticles mediated by the roots of Chinese herbal Angelica pubescens Maxim. Nanoscale Research Letters. 2017, 12(1),1-12. DOI: https://doi.org/10.1186/s11671-017-1833-2
Elangovan, K.; Elumalai, D.; Anupriya, S.; Shenbhagaraman, R.; Kaleena, P.K.; Murugesan, K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B: Biology. 2015, 151, 118-124. DOI: https://doi.org/10.1016/j.jphotobiol.2015.05.015
Soshnikova, V.; Kim, Y.J.; Singh, P.; Huo, Y.; Markus, J.; Ahn, S.; Castro-Aceituno, V.; Kang, J.; Chokkalingam, M.; Mathiyalagan, R.; Yang, D.C. Cardamom fruits as a green resource for facile synthesis of gold and silver nanoparticles and their biological applications. Artificial cells, nanomedicine, and biotechnology. 2018, 46(1), 108-117. DOI: https://doi.org/10.1080/21691401.2017.1296849
Rasheed, T.; Bilal, M.; Iqbal, H.M.; Li, C. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications. Colloids and Surfaces B: Biointerfaces. 2017, 158, 408-415. DOI: https://doi.org/10.1016/j.colsurfb.2017.07.020
Bhattacharyya, S.S.; Das, J.; Das, S.; Samadder, A.; Das, D.; De, A.; Paul, S. ; Khuda-Bukhsh, A.R. Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture Phytolacca Decandra. Zhong xi yi jie he xue bao= Journal of Chinese Integrative Medicine. 2012, 10(5), 546-554. DOI: https://doi.org/10.3736/jcim20120510
Rao, K.; Aziz, S.;Roome, T.; Razzak, A.; Sikandar, B.; Jamali, K.S.; Imran, M., Jabri, T.; Shah, M.R. Gum acacia stabilized silver nanoparticles based nano-cargo for enhanced anti-arthritic potentials of hesperidin in adjuvant induced arthritic rats. Artificial cells, nanomedicine, and biotechnology. 2018, 46(sup1), 597-607. DOI: https://doi.org/10.1080/21691401.2018.1431653
Vickers, N.J. Animal communication: when i’m calling you, will you answer too. Current biology. 2017, 27(14), R713-R715. DOI: https://doi.org/10.1016/j.cub.2017.05.064
Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Materials Science and Engineering: C . 2020, 112, 110901.
Sekar, V.; Balakrishnan, C.; Kathirvel, P.; Swamiappan, S.; Alshehri, M.A.; Sayed, S.; Panneerselvam, C. Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application. Artificial Cells, Nanomedicine, and Biotechnology. 2022, 50(1), 177-187.
Patra, S.; Mukherjee, S.; Barui, A.K.; Ganguly, A.; Sreedhar, B.; Patra, C.R. Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Materials Science and Engineering: C. 2015, 53, 298-309. DOI: https://doi.org/10.1016/j.msec.2015.04.048
Rodrigues, M.C.; Rolim, W.R.; Viana, M.M.; Souza, T.R.; Gonçalves, F.; Tanaka, C.J.; Bueno-Silva, B.; Seabra, A.B. Biogenic synthesis and antimicrobial activity of silica-coated silver nanoparticles for esthetic dental applications. Journal of Dentistry. 2020, 96, 103327.
Sathishkumar, P.; Preethi, J.; Vijayan, R.; Yusoff, A.R.M.; Ameen, F.; Suresh, S.; Balagurunathan, R.; Palvannan, T. Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. Journal of Photochemistry and Photobiology B: Biology. 2016, 163, 69-76. DOI: https://doi.org/10.1016/j.jphotobiol.2016.08.005
He, Y.; Li, X.; Wang, J.; Yang, Q.; Yao, B.; Zhao, Y.; Zhao, A.; Sun, W.; Zhang, Q. Synthesis, characterization and evaluation cytotoxic activity of silver nanoparticles synthesized by Chinese herbal Cornus officinalis via environment friendly approach. Environmental Toxicology and Pharmacology. 2017, 56, 56-60. DOI: https://doi.org/10.1016/j.etap.2017.08.035
Thomas, R.; Snigdha, S.; Bhavitha, K.B.; Babu, S.; Ajith, A.; Radhakrishnan, E.K. Biofabricated silver nanoparticles incorporated polymethyl methacrylate as a dental adhesive material with antibacterial and antibiofilm activity against Streptococcus mutans. 2018, 8(9), 1-10.
Sre, P.R.; Reka, M.; Poovazhagi, R.; Kumar, M.A.; Murugesan, K. Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica lam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 135, 1137-1144.. DOI: https://doi.org/10.1016/j.saa.2014.08.019
Sulaiman, G.M.; Mohammed, W.H.; Marzoog, T.R.; Al-Amiery, A.A.A.; Kadhum, A.A.H; Mohamad, A.B. Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pacific journal of tropical biomedicine. 2013, 3(1), 58-63. DOI: https://doi.org/10.1016/S2221-1691(13)60024-6
Gomathi, M.; Rajkumar, P.V.; Prakasam, A.; Ravichandran, K. Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of their antibacterial activity. Resource-Efficient Technologies. 2017, 3(3), 280-284. DOI: https://doi.org/10.1016/j.reffit.2016.12.005
Thakkar, K.N.; Mhatre, S.S.; Parikh, R.Y. Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine. 2010, 6(2), 257-262. DOI: https://doi.org/10.1016/j.nano.2009.07.002
Singh, J.; Dutta, T.; Kim, K.H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of nanobiotechnology. 2018, 16(1), 1-24.
Gericke, M.; Pinches, A. Microbial production of gold nanoparticles. Gold bulletin. 2006, 39(1), 22-28. DOI: https://doi.org/10.1007/BF03215529
Iravani, S. Bacteria in nanoparticle synthesis: current status and future prospects. International scholarly research notices, 2014. DOI: https://doi.org/10.1155/2014/359316
Devi, G.K.; Suruthi, P.; Veerakumar, R.; Vinoth, S.; Subbaiya, R.; Chozhavendhan, S. A review on metallic gold and silver nanoparticles. Research Journal of Pharmacy and Technology. 2019, 12(2), pp.935-943.
Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C.G. Silver-based crystalline nanoparticles, microbially fabricated. Proceedings of the National Academy of Sciences. 1999, 96(24), 13611-13614. DOI: https://doi.org/10.1073/pnas.96.24.13611
Gherasim, O.; Puiu, R.A.; Bîrcă, A.C.; Burdușel, A.C.; Grumezescu, A.M. An updated review on silver nanoparticles in biomedicine. Nanomaterials. 2020, 10(11), 2318.
Sunkar, S .; Nachiyar, C.V. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine. 2012, 2(12), 953-959. DOI: https://doi.org/10.1016/S2221-1691(13)60006-4
Korbekandi, H.; Iravani, S.; Abbasi, S. Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. Journal of Chemical Technology & Biotechnology. 2012, 87(7), 932-937. DOI: https://doi.org/10.1002/jctb.3702
Otari, S.V.; Patil, R.M.; Ghosh, S.J.; Thorat, N.D.; Pawar, S.H. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2015, 136,1175-1180. DOI: https://doi.org/10.1016/j.saa.2014.10.003
Yashavantha Rao, H.C.; Nagendra-Prasad, M.N.; Prasad, A.; Harini, B.P.; Azmath, P.; Rakshith, D.; Satish, S. Biomimetic synthesis of silver nanoparticles using endosymbiotic bacterium inhabiting Euphorbia hirta L. and their bactericidal potential. Scientifica. 2016, 2016. DOI: https://doi.org/10.1155/2016/9020239
Singh, H.; Du, J.; Yi, T.H. Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy. Artificial Cells, Nanomedicine, and Biotechnology. 2017, 45(3), pp.602-608. DOI: https://doi.org/10.3109/21691401.2016.1163718
Das, V.L.; Thomas, R.; Varghese, R.T.; Soniya, E.V.; Mathew, J.; Radhakrishnan, E.K. Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech. 2014, 4(2), pp.121-126. DOI: https://doi.org/10.1007/s13205-013-0130-8
Du, J.; Singh, H.; Yi, T.H. Biosynthesis of silver nanoparticles by Novosphingobium sp. THG-C3 and their antimicrobial potential. Artificial cells, nanomedicine, and biotechnology. 2017, 45(2), 211-217. DOI: https://doi.org/10.1080/21691401.2016.1178135
Wang, C.; Kim, Y.J.; Singh, P.; Mathiyalagan, R.; Jin, Y.; Yang, D.C. Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artificial cells, nanomedicine, and biotechnology. 2016, 44(4), 1127-1132.
Thomas, R.; Soumya, K.R.; Mathew, J.; Radhakrishnan, E.K. Electrospun polycaprolactone membrane incorporated with biosynthesized silver nanoparticles as effective wound dressing material. Applied biochemistry and biotechnology. 2015, 176(8), 2213-2224. DOI: https://doi.org/10.1007/s12010-015-1709-9
Singh, H.; Du, J.; Yi, T.H. Biosynthesis of silver nanoparticles using Aeromonas sp. THG-FG1. 2 and its antibacterial activity against pathogenic microbes. Artificial Cells, Nanomedicine, and Biotechnology. 2017, 45(3), 584-590. DOI: https://doi.org/10.3109/21691401.2016.1163715
Sinha, S.N.; Paul, D.; Halder, N.; Sengupta, D.; Patra, S.K. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Applied Nanoscience. 2015, 5(6), pp.703-709. DOI: https://doi.org/10.1007/s13204-014-0366-6
Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.K. Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed research international. 2013, 2013. DOI: https://doi.org/10.1155/2013/287638
Mohamed, N.H.; Ismail, M.A.; Abdel-Mageed, W.M.; Shoreit, A.A.M. Antimicrobial activity of green silver nanoparticles from endophytic fungi isolated from Calotropis procera (Ait) latex. Microbiology. 2019, 165(9), 967-975. DOI: https://doi.org/10.1099/mic.0.000832
Chen, Y.L.; Tuan, H.Y.; Tien, C.W.; Lo, W.H.; Liang, H.C.; Hu, Y.C. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology progress. 2009, 25(5), 1260-1266. DOI: https://doi.org/10.1002/btpr.199
Arora, S.; Latwal, M.; Bahukhandi, K.D.; Kumar, D.; Vemulapalli, T.; Egutoori, S.; Siddiqui, N.A. Greener Approach to Metallic Nanoparticles: A Review. Nature Environment & Pollution Technology. 2021, 20(2).
Taha, Z.K.; Hawar, S.N.; Sulaiman, G.M. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnology letters, 2019. 41(8), 899-914.
Janakiraman, V.; Govindarajan, K.; CR, M. Biosynthesis of silver nanoparticles from endophytic fungi, and its cytotoxic activity. BioNanoScience. 2019, 9(3), 573-579.
Thomas, R.; Janardhanan, A.; Varghese, R.T.; Soniya, E.V.; Mathew, J.; Radhakrishnan, E.K. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Brazilian Journal of Microbiology. 2014, 45, 1221-1227. DOI: https://doi.org/10.1590/S1517-83822014000400012
Tyagi, S.; Tyagi, P.K.; Gola, D.; Chauhan, N.; Bharti, R.K. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Applied Sciences. 2019, 1(12), 1-9.
Santos, T.S.; Silva, T.M.; Cardoso, J.C.; Albuquerque-Júnior, R.L.D.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonça, M.D.C. Biosynthesis of silver nanoparticles mediated by entomopathogenic fungi: Antimicrobial resistance, nanopesticides, and toxicity. Antibiotics. 2021, 10(7), 852.
Mikhailov, O.V. Progress in the synthesis of Ag nanoparticles having manifold geometric forms. Reviews in Inorganic Chemistry, 2018. 38(1), 21-42. DOI: https://doi.org/10.1515/revic-2017-0016
Guilger-Casagrande, M.; Germano-Costa, T.; Pasquoto-Stigliani, T.; Fraceto, L.F.; Lima, R.D. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Scientific reports. 2019, 9(1), 1-9.
Balakumaran, M.D.; Ramachandran, R.; Kalaichelvan, P.T. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiological research. 2015, 178, 9-17. DOI: https://doi.org/10.1016/j.micres.2015.05.009
Xue, B.; He, D.; Gao, S.; Wang, D.; Yokoyama, K.; Wang, L. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. International journal of nanomedicine. 2016, 11, 1899. DOI: https://doi.org/10.2147/IJN.S98339
Jalal, M.; Ansari, M.A.; Alzohairy, M.A.; Ali, S.G.; Khan, H.M.; Almatroudi, A.; Raees, K. Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials. 2018, 8(8), 586.
Al-Limoun, M.; Qaralleh, H.N.; Khleifat, K.M.; Al-Anber, M.; Al-Tarawneh, A.; Al-sharafa, K.; Kailani, M.H.; Zaitoun, M.A.; Matar, S.A.; Al-soub, T. Culture Media Composition and Reduction Potential Optimization of Mycelia-free Filtrate for the Biosynthesis of Silver Nanoparticles Using the Fungus Tritirachium oryzae W5H. Current Nanoscience, 2020. 16(5), 757-769. DOI: https://doi.org/10.2174/1573413715666190725111956
Alaallah, N.J.; Abd ALKareem, E.A.; GHAİDAN, A.F.; Imran, N.A. Eco-friendly approach for silver nanoparticles synthesis from lemon extract and their anti-oxidant, anti-bacterial, and anti-cancer activities. Journal of the Turkish Chemical Society Section A: Chemistry. 2023, 10(1), pp.205-216.
Panja, A.; Mishra, A.K.; Dash, M.; Pandey, N.K.; Singh, S.K.; Kumar, B. Silver Nanoparticles–A Review. Eurasian Journal of Medicine and Oncology. 2021, 5(2), 95.
Usmani, A.; Mishra, A.; Jafri, A.; Arshad, M.; Siddiqui, M.A. Green synthesis of silver nanocomposites of Nigella sativa seeds extract for hepatocellular carcinoma. Current Nanomaterials. 2019, 4(3), 191-200. DOI: https://doi.org/10.2174/2468187309666190906130115
Hawar, S.N.; Al-Shmgani, H.S.; Al-Kubaisi, Z.A.; Sulaiman, G.M.; Dewir, Y.H.; Rikisahedew, J.J. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. Journal of Nanomaterials. 2022, Jan 5;2022.
Odeniyi, M.A.; Okumah, V.C.; Adebayo-Tayo, B.C.; Odeniyi, O.A. Green synthesis and cream formulations of silver nanoparticles of Nauclea latifolia (African peach) fruit extracts and evaluation of antimicrobial and antioxidant activities. Sustainable Chemistry and Pharmacy. 2020, 15, 100197.
Suwan, T.; Khongkhunthian, S.; Okonogi, S. Green synthesis and inhibitory effects against oral pathogens of silver nanoparticles mediated by rice extracts. Drug discoveries & therapeutics. 2018, 12(4), 189-196.
Loganathan, S.; Selvam, K.; Padmavathi, G.; Shivakumar, M.S.; Senthil-Nathan, S.; Sumathi, A.G.; Ali, M.A.; Almutairi, S.M. Biological synthesis and characterization of Passiflora subpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. Journal of King Saud University-Science. 2022, 34(3), 101846.
Souza, J.A.; Barbosa, D.B.; Berretta, A.A.; Do Amaral, J.G.; Gorup, L.F.; de Souza Neto, F.N.; Fernandes, R.A.; Fernandes, G.L.; Camargo, E.R.; Agostinho, A.M.; Delbem, A.C. Green synthesis of silver nanoparticles combined to calcium glycerophosphate: antimicrobial and antibiofilm activities. Future microbiology. 2018, 13(3), 345-357. DOI: https://doi.org/10.2217/fmb-2017-0173
Vijayan, R.; Joseph, S.; Mathew, B. Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties. Artificial cells, nanomedicine, and biotechnology.2018, 46(4), 861-871 DOI: https://doi.org/10.1080/21691401.2017.1345930
Stalin Dhas, T. In vitro antibacterial activity of biosynthesized silver nanoparticles against gram negative bacteria. Inorganic and Nano-Metal Chemistry. 2022, 1-10.
Hashemi, Z.; Mizwari, Z.M.; Mohammadi-Aghdam, S.; Mortazavi-Derazkola, S.; Ebrahimzadeh. Sustainable green synthesis of silver nanoparticles using Sambucus ebulus phenolic extract (AgNPs@ SEE): Optimization and assessment of photocatalytic degradation of methyl orange and their in vitro antibacterial and anticancer activity. Arabian Journal of Chemistry. 2022, 15(1), 103525.
Pathak, M.; Pathak, P.; Khalilullah, H.; Grishina, M.; Potemkin, V.; Kumar, V., Majee, R.; Ramteke, P.W.; Abdellattif, M.H.; Shahbaaz, M.; Verma, A. Green synthesis of silver nanoformulation of Scindapsus officinalis as potent anticancer and predicted anticovid alternative: Exploration via experimental and computational methods. Biocatalysis and Agricultural Biotechnology. 2021, 35, 102072.
Shyamalagowri, S.; Charles, P.; Manjunathan, J.; Kamaraj, M.; Anitha, R.; Pugazhendhi, A. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines. Process Biochemistry. 2022, 116, 17-25.
Das, P.; Dutta, T.; Manna, S.; Loganathan, S.; Basak, P. Facile green synthesis of non-genotoxic, non-hemolytic organometallic silver nanoparticles using extract of crushed, wasted, and spent Humulus lupulus (hops): Characterization, anti-bacterial, and anti-cancer studies. Environmental Research. 2022, 204, 111962.
Bhat, M.; Chakraborty, B.; Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Kotresha, D.;Pallavi, S.S.; Dhanyakumara, S.B.; Shashiraj, K.N.; Nayaka, S. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. Journal of King Saud University-Science. 2021, 33(2), p.101296.
Pugazhendhi, S.; Sathya, P.; Palanisamy, P.K.; Gopalakrishnan, R. Synthesis of silver nanoparticles through green approach using Dioscorea alata and their characterization on antibacterial activities and optical limiting behavior. Journal of Photochemistry and Photobiology B: Biology. 2016, 159, 155-160. DOI: https://doi.org/10.1016/j.jphotobiol.2016.03.043
Naveed, M.; Bukhari, B.; Aziz, T.; Zaib, S.; Mansoor, M.A.; Khan, A.A.; Shahzad, M.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; Alamri, A.S. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules. 2022, 27(13), 4226.
Niluxsshun, M.C.D.; Masilamani, K.; Mathiventhan, U.; Green synthesis of silver nanoparticles from the extracts of fruit peel of Citrus tangerina, Citrus sinensis, and Citrus limon for antibacterial activities. Bioinorganic chemistry and applications, 2021. 2021.
Tyagi, P.K.; Tyagi, S.; Gola, D.; Arya, A.; Ayatollahi, S.A.; Alshehri, M.M.; Sharifi-Rad, J. Ascorbic acid and polyphenols mediated green synthesis of silver nanoparticles from Tagetes erecta L. aqueous leaf extract and studied their antioxidant properties. Journal of Nanomaterials, 2021. 2021.
Hembram, K.C.; Kumar, R.; Kandha, L.; Parhi, P.K.; Kundu, C.N.; Bindhani, B.K. Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artificial cells, nanomedicine, and biotechnology. 2018, 46(sup3), S38-S51.
Trefry, J.C.; Wooley, D.P. Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism. Journal of biomedical nanotechnology. 2013, 9(9), 1624-1635. DOI: https://doi.org/10.1166/jbn.2013.1659
Baer, D.R.; Gaspar, D.J.; Nachimuthu, P.; Techane, S.D.; Castner, D.G. Application of surface chemical analysis tools for characterization of nanoparticles. Analytical and bioanalytical chemistry. 2010, 396(3), 983-1002. DOI: https://doi.org/10.1007/s00216-009-3360-1
Rai, M.; Yadav, A.; Gade , A. Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances. 2009, 27(1), 76-83. DOI: https://doi.org/10.1016/j.biotechadv.2008.09.002
Tang, J.; Erdener, S.E.; Li, B., Fu, B.; Sakadzic, S.; Carp, S.A.; Lee, J.; Boas, D.A. Shear‐induced diffusion of red blood cells measured with dynamic light scattering‐optical coherence tomography. Journal of biophotonics. 2018, 11(2), 201700070. DOI: https://doi.org/10.1002/jbio.201700070
Leung, A.B.; Suh , K.I.; Ansari, R. i . Particle-size and velocity measurements in flowing conditions using dynamic light scattering. Applied optics. 2006, 45, (10). 2186-2190. DOI: https://doi.org/10.1364/AO.45.002186