Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range

Authors

  • Thair Abdulkareem Khalil Al-Aish Department of Physics, College of Education for Pure Sciences ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.
  • Mohammed Kamal Saleh Department of Physics, College of Education for Pure Sciences Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.30526/36.3.3093

Keywords:

FEL, Attenuation Coefficient, M2, Gaussian Beam, Atmosphere Turbulence

Abstract

Abstract: The power and the size of the final spot of the laser beam reaching the target are very important requirements in most of the laser applications and fields such as medical, military, and scientific, so studying laser propagation in the atmosphere is a very important topic. The propagation of the laser beam through the atmosphere is subject to several attenuation processes that deplete the power and expand the beam. Through the simulation results of the free electron laser within the visible region of the electromagnetic spectrum (400-700nm), it was found that the attenuation increases with decreasing wavelength. Laser propagation in the presence of rain and snow leads to a very large loss of power compared to propagation in normal weather conditions free of rain and snow. Atmosphere turbulence depends largely on changes in temperature, so the turbulence decreases with altitude from sea level, which makes laser work at high altitudes, such as the stratosphere, a good option with better results.

 

References

Carlos, B.; Gómez, G.; Poliak, I. J.; Laser Beam Shaping, Master’s Thesis, Brno University of Technology, 2012.

de Prado, R. P.; García-Galán, S.; Muñoz-Expósito, J. E.; Marchewka, A.; Computer-aided laser-fiber output beam 3d spatial and angular design, Symmetry, 2020, 12, 1. doi: 10.3390/sym12010083.

Fahey, T.; Islam, M.; Gardi, A.; Sabatini, R.; Laser Beam Atmospheric Propagation Modelling for Aerospace LIDAR Applications, Atmosphere (Basel)., 2021, 12, 7, 918, doi: 10.3390/atmos12070918.

Lateef, R. T.; AL-Aish, T.; Design and Simulate a New Defense System of Free Electron Laser DSFEL, Eng. Technol. J. 2017, 53, 2, 166–172.

Al-Aish, T. A. K.; Jawad, R. L.; Kamil, H. A.; Design and simulation a high-energy free electron laser HEFEL, in AIP Conference Proceedings, 2019, 2123, 020068. doi: 10.1063/1.5116995.

Mahmood H. K.; Al-Aish, T. A. K.; Design and stimulated the detectors of high-power lasers DHPL, in AIP Conference Proceedings, 2020, 2307, 020025. doi: 10.1063/5.0032989.

Dhedan, Z. A.; Al-Aish, T. A. K.; Kamil, H. A.; Design and simulation of a new system for producing laser beams without resonator ‘NSPLBR, in AIP Conference Proceedings, 2022, 2437, 1, 20012.

Ali, M. A.; Al-Aish, T. A. K.; Kamil, H. A.; A simulation breakdown the blood clot using a free electron laser system, in AIP Conference Proceedings, 2022, 2437, 1, 20021.

Al-Aish, T. A. K.; Kamil, H. A.; Simulation and Analysis the Effect of the Lorentz Force in a Free Electron Laser, Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35, 2, 7–16,

Kamil, H. A.; Ahmed, M. S.;. Al-Aish, T. A. K.; Rain formation by free electron laser pulse system FELPS, in AIP Conference Proceedings, 2019, 2190, 020084. doi: 10.1063/1.5138570.

Jawad, R. L.; Calculating and Analysing of Some Atmospheric Effects on the Beam of Free Electron Laser, Master Thesis ,University of Baghdad , Iraq, 2017.

AL-BASSAM, H. A. K.; Theoretical Study for the Design of a Free electron Laser System to Produce Artificial Rain in Iraq, Master Thesis ,University of Baghdad, Iraq, 2020.

Alda, J.; Laser and Gaussian Beam Propagation and Transformation, in Encyclopedia of Optical and Photonic Engineering, Second Edition, Taylor & Francis, 2019, 34, 1–15. doi: 10.1081/e-eoe2-120009751. DOI: https://doi.org/10.1081/E-EOE2-120009751

Al-aish, T. A. K.; Design and Analysis the Fiber Laser Weapon System FLWS, Adv. Phys. Theor. Appl., 2015, 47, 59–69.

Al-Aish, T. A. K.; Analysis and study of the effect of atmospheric turbulence on laser weapon in Iraq, Baghdad Sci. J., 2017, 14, 2, 427–436, doi: 10.21123/ bsj.2017. 14.2.0427. DOI: https://doi.org/10.21123/bsj.2017.14.2.0427

Kulikov, V. A.; Vorontsov, M. A.; Analysis of the joint impact of atmospheric turbulence and refractivity on laser beam propagation, Opt. Express,. 2017, 25, 23, 28524,. doi: 10.1364/OE.25.028524. DOI: https://doi.org/10.1364/OE.25.028524

Xu, M.; Shao, S.; Liu, Q.; Sun, G.; Han, Y.; Weng, N.; Optical Turbulence Profile Forecasting and Verification in the Offshore Atmospheric Boundary Layer, Appl. Sci., 2021, 11, 18, 8523, doi: 10.3390/app11188523.

Shao, S.; Qin, F.; Xu, M.; Liu, Q.; Han, Y.; Xu, Z.; Temporal and spatial variation of refractive index structure coefficient over South China sea, Results Eng. 2021, 9, 100191, doi: 10.1016/j.rineng.2020.100191.

Downloads

Published

20-Jul-2023

Issue

Section

Physics

Publication Dates