Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range

Main Article Content

Thair Abdulkareem Khalil Al-Aish
Mohammed Kamal Saleh

Abstract

Abstract: The power and the size of the final spot of the laser beam reaching the target are very important requirements in most of the laser applications and fields such as medical, military, and scientific, so studying laser propagation in the atmosphere is a very important topic. The propagation of the laser beam through the atmosphere is subject to several attenuation processes that deplete the power and expand the beam. Through the simulation results of the free electron laser within the visible region of the electromagnetic spectrum (400-700nm), it was found that the attenuation increases with decreasing wavelength. Laser propagation in the presence of rain and snow leads to a very large loss of power compared to propagation in normal weather conditions free of rain and snow. Atmosphere turbulence depends largely on changes in temperature, so the turbulence decreases with altitude from sea level, which makes laser work at high altitudes, such as the stratosphere, a good option with better results.


 

Article Details

How to Cite
Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(3), 124-136. https://doi.org/10.30526/36.3.3093
Section
Physics

How to Cite

Simulation and Analysis the Attenuation Effect of Atmospheric Layers on a Laser Beam Within the Visible Range. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(3), 124-136. https://doi.org/10.30526/36.3.3093

Publication Dates

References

Carlos, B.; Gómez, G.; Poliak, I. J.; Laser Beam Shaping, Master’s Thesis, Brno University of Technology, 2012.

de Prado, R. P.; García-Galán, S.; Muñoz-Expósito, J. E.; Marchewka, A.; Computer-aided laser-fiber output beam 3d spatial and angular design, Symmetry, 2020, 12, 1. doi: 10.3390/sym12010083.

Fahey, T.; Islam, M.; Gardi, A.; Sabatini, R.; Laser Beam Atmospheric Propagation Modelling for Aerospace LIDAR Applications, Atmosphere (Basel)., 2021, 12, 7, 918, doi: 10.3390/atmos12070918.

Lateef, R. T.; AL-Aish, T.; Design and Simulate a New Defense System of Free Electron Laser DSFEL, Eng. Technol. J. 2017, 53, 2, 166–172.

Al-Aish, T. A. K.; Jawad, R. L.; Kamil, H. A.; Design and simulation a high-energy free electron laser HEFEL, in AIP Conference Proceedings, 2019, 2123, 020068. doi: 10.1063/1.5116995.

Mahmood H. K.; Al-Aish, T. A. K.; Design and stimulated the detectors of high-power lasers DHPL, in AIP Conference Proceedings, 2020, 2307, 020025. doi: 10.1063/5.0032989.

Dhedan, Z. A.; Al-Aish, T. A. K.; Kamil, H. A.; Design and simulation of a new system for producing laser beams without resonator ‘NSPLBR, in AIP Conference Proceedings, 2022, 2437, 1, 20012.

Ali, M. A.; Al-Aish, T. A. K.; Kamil, H. A.; A simulation breakdown the blood clot using a free electron laser system, in AIP Conference Proceedings, 2022, 2437, 1, 20021.

Al-Aish, T. A. K.; Kamil, H. A.; Simulation and Analysis the Effect of the Lorentz Force in a Free Electron Laser, Ibn AL-Haitham J. Pure Appl. Sci., 2022, 35, 2, 7–16,

Kamil, H. A.; Ahmed, M. S.;. Al-Aish, T. A. K.; Rain formation by free electron laser pulse system FELPS, in AIP Conference Proceedings, 2019, 2190, 020084. doi: 10.1063/1.5138570.

Jawad, R. L.; Calculating and Analysing of Some Atmospheric Effects on the Beam of Free Electron Laser, Master Thesis ,University of Baghdad , Iraq, 2017.

AL-BASSAM, H. A. K.; Theoretical Study for the Design of a Free electron Laser System to Produce Artificial Rain in Iraq, Master Thesis ,University of Baghdad, Iraq, 2020.

Alda, J.; Laser and Gaussian Beam Propagation and Transformation, in Encyclopedia of Optical and Photonic Engineering, Second Edition, Taylor & Francis, 2019, 34, 1–15. doi: 10.1081/e-eoe2-120009751.

Al-aish, T. A. K.; Design and Analysis the Fiber Laser Weapon System FLWS, Adv. Phys. Theor. Appl., 2015, 47, 59–69.

Al-Aish, T. A. K.; Analysis and study of the effect of atmospheric turbulence on laser weapon in Iraq, Baghdad Sci. J., 2017, 14, 2, 427–436, doi: 10.21123/ bsj.2017. 14.2.0427.

Kulikov, V. A.; Vorontsov, M. A.; Analysis of the joint impact of atmospheric turbulence and refractivity on laser beam propagation, Opt. Express,. 2017, 25, 23, 28524,. doi: 10.1364/OE.25.028524.

Xu, M.; Shao, S.; Liu, Q.; Sun, G.; Han, Y.; Weng, N.; Optical Turbulence Profile Forecasting and Verification in the Offshore Atmospheric Boundary Layer, Appl. Sci., 2021, 11, 18, 8523, doi: 10.3390/app11188523.

Shao, S.; Qin, F.; Xu, M.; Liu, Q.; Han, Y.; Xu, Z.; Temporal and spatial variation of refractive index structure coefficient over South China sea, Results Eng. 2021, 9, 100191, doi: 10.1016/j.rineng.2020.100191.