Isolation and Diagnosis of Bacteria in Bacteremia Patients and Study Their Resistance to Antibiotics in Kirkuk Hospitals

Authors

  • Abbas Hameed Al-Wandawy Department of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.
  • Luma Abdulhady Zwain Department of Biology, College of Education for Pure Science, Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.
  • Dalia Maher Khidher Maher Khidher Directorate of Health of Kirkuk/ Azadi-Teaching Hospital Ministry of Health/Iraq
  • Peter F. Farag Department of Microbiology, Faculty of Science, Ain Shams University, Abbasia 11566, Egypt

DOI:

https://doi.org/10.30526/36.3.3097

Keywords:

Bacteremia, Dialysis unit, Burns, Wounds, Infants.

Abstract

313 blood samples were collected from bacteremia patients, including 146 samples (30 from patients and 116 from outpatients) from Azadi teaching hospital, 36 samples from the dialysis unit at Kirkuk General Hospital, 126 samples (42 from inpatients and 84 from outpatients) from the Children's Hospital, and 5 samples from the Women's and Obstetrics Hospital in Kirkuk province, for the period from January 24, 2022, to September 10, 2022. The study, including the isolation and diagnosis of bacteria and the study of their resistance to antibiotics, The results show that 32 (17.87%) positive growth cultures were obtained from febrile patients, 3 (8.33%) from dialysis patients in the dialysis unit, and 15 (65.21%) from burn and wound patients. Fifty bacterial isolates were obtained, all of which were gram-positive. 

Staphylococcus was the highest with 28 isolates, including [(11) S.homoinis, (4) S.epidermidis epidermidis, (2) isolates each of S.haemolyticus and S. Wagner, and (9) Staphylococcus spp.], while Enterococcus faecalis was one isolate. The gram-negative bacteria were [(11) Pseudomonas aeruginosa, (5) Escherichia coli, (2) isolates of Enterobacter cloacae, and followed by one isolate of Raoultella terrigena, Acinetobacter spp., and Klebsiella spp.). Staphylococcus spp. resistance to 20 antibiotics was studied, and the species S.homoinis showed 100% resistance to (Oxacillin, Benzylpenicillin, and Amoxicillin). Whereas S.epidermidis epidermidis was 100% antibiotic-resistant (Oxacillin, Benzylpenicillin, and Amoxicillin). S. hemolyticus was resistant to (erythromycin, benzylbeniclin, amosiclin, amikachin, gentamicin, torramichin, and tetracycline) by 100%. S. warneri was resistant to (oxacillin, benzylpenicillin, amoxicillin, and dusidic Acid) at a rate of one hundred percent.

References

Garnica, O.; Gómez, D.; Ramos, V., Hidalgo, J. I.; Ruiz-Giardín, J. M. Diagnosing hospital bacteremia in the framework of predictive, preventive and personalised medicine using electronic health records and machine learning classifiers. EPMA Journal 2021, 12(3), 365–381. https://doi.org/10.1007/s13167-021-00252-3.

Duan, N.; Sun, L.; Huang, C.; Li, H.; Cheng, B. Microbial Distribution and Antibiotic Susceptibility of Bloodstream Infections in Different Intensive Care Units. Frontiers in Microbiology 2021, 12(December). https://doi.org/10.3389/fmicb.2021.792282

Agyeman, P.K.A.; Schlapbach, L.J.; Giannoni, E.; Stocker, M.; Posfay-Barbe, K. M.; Heininger, U.; Schindler, M.; Korten, I.; Konetzny, G.; Niederer-Loher, A.; Kahlert, C. R.; Donas, A.; Leone, A.; Hasters, P.; Relly, C.; Baer, W.; Kuehni, C. E.; Aebi, C.; Berger, C. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. The Lancet Child Adolesc. Health 2017, 1(2), 124–133. https://doi.org/10.1016/S2352-4642(17)30010-X. DOI: https://doi.org/10.1016/S2352-4642(17)30010-X

Dellinger, R.P.; Levy, M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; Osborn, T. M.; Nunnally, M.E.; Townsend, S.R.; Reinhart, K.; Kleinpell, R.M.; Angus, D.C.; Deutschman, C.S.; Machado, FR.; Rubenfeld, G.D.; Zimmerman, J.L. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39(2), 165–228. https://doi.org/10.1007/s00134-012-2769-8. DOI: https://doi.org/10.1007/s00134-012-2769-8

Rothe, K.; Spinner, C. D.; Ott, A.; Querbach, C.; Dommasch, M.; Aldrich, C.; Gebhardt, F.; Schneider, J.; Schmid, R.M.; Busch, D.H.; Katchanov, J. Strategies for increasing diagnostic yield of community-onset bacteraemia within the emergency department: A retrospective study. PLoS ONE, 14(9), 1–13. https://doi.org/10.1371/journal.pone.0222545

Long, B. ; Koyfman, A. (2016). Best Clinical Practice: Blood Culture Utility in the Emergency Department. J. Emerg. Med. 2019, 51(5), 529–539. https://doi.org/10.1016/j.jemermed.2016.07.003 DOI: https://doi.org/10.1016/j.jemermed.2016.07.003

Johnson, A.L.; Ratnasekera, I.U.; Irvine, K.M.; Henderson, A.; Powell, E.E.; Valery, P.C. Bacteraemia, sepsis and antibiotic resistance in Australian patients with cirrhosis: A population-based study. BMJ Open Gastroenterol. 2021, 8(1), 1–12. https://doi.org/10.1136/bmjgast-2021-000695

Chiang, H.Y.; Chen, T.C.; Lin, C.C.; Ho, L.C.; Kuo, C.C.; Chi, C.Y. Trend and Predictors of Short-term Mortality of Adult Bacteremia at Emergency Departments: A 14-Year Cohort Study of 14 625 Patients. Open Forum Infectious Diseases, 2021, 8(11). https://doi.org/10.1093/ofid/ofab485.

Kusama, Y.; Ito, K.; Fukuda, H.; Matsunaga, N.; Ohmagari, N. National database study of trends in bacteraemia aetiology among children and adults in Japan: A longitudinal observational study. BMJ Open 2021, 11(3), 1–7. https://doi.org/10.1136/bmjopen-2020-043774

Cornelissen, C.N.; Fisher, B.D.; Harvey, R.A. Lippincott’s Illustrated Reviews: Microbiology. Third Edition. Lippincott Williams & Wilkins, a Wolters Kluwer business: m 2013, 450PP.

Riedel, S.; Morse, S.A.; Mietzner, T.; Miller, S. Jawetz, Melnick, ; Adelberg’s Medical Microbiology. Twenty-Eighth Edition. McGraw-Hill Education, New York, 2019, 827PP.

Regecová, I.; Výrostková, J.; Zigo, F.; Gregová, G.; Pipová, M.; Jevinová, P.; Becová, J. Detection of Resistant and Enterotoxigenic Strains of Staphylococcus warneri Isolated from Food of Animal Origin. Foods 2022, 11(10), 1496. https://doi.org/10.3390/foods11101496.

Golińska, E.; Strus, M.; Tomusiak-Plebanek, A.; Więcek, G.; Kozień, Ł.; Lauterbach, R.; Pawlik, D.; Rzepecka-Węglarz, B.; Kędzierska, J.; Dorycka, M.; Heczko, P.B. Coagulase-negative staphylococci contained in gut microbiota as a primary source of sepsis in low-and very low birth weight neonates. J. Clin. Med., 2020, 9(8), 1–13. https://doi.org/10.3390/jcm9082517

Kranjec, C.; Angeles, D.M.; Mårli, M. T.; Fernández, L.; García, P.; Kjos, M.; Diep, D. B. Staphylococcal biofilms: Challenges and novel therapeutic perspectives. Antibiotics 2021, 10(2), 1–30. https://doi.org/10.3390/antibiotics10020131

Zhao, Z.-H.; Fan, Y.-C. ; Wang, K. Pyogenic Liver Abscess Caused by Staphylococcus hominis. Infect. Microbes Dis. 2021, Publish Ah. https://doi.org/10.1097/im9.0000000000000078. DOI: https://doi.org/10.1097/IM9.0000000000000078

Dong, Y.; Speer, C.P.; Glaser, K. Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity. Virulence, 2018, 9(1), 621–633. https://doi.org/10.1080/21505594.2017.1419117. DOI: https://doi.org/10.1080/21505594.2017.1419117

Kuvhenguhwa, M.S.; Belgrave, K.O.; Shah, S. U.; Bayer, A. S.; Miller, L. G. A Case of Early Prosthetic Valve Endocarditis Caused by Staphylococcus warneri in a Patient Presenting With Congestive Heart Failure. Cardiol. Res. 2017, 8(5), 236–240. https://doi.org/10.14740/cr588w DOI: https://doi.org/10.14740/cr588w

Eltwisy, H.O.; Twisy, H.O.; Hafez, M.H.R.; Sayed, I.M.; El-mokhtar, M.A. Clinical Infections, Antibiotic Resistance, and Pathogenesis of Staphylococcus haemolyticus. Microorganisms. 2022, 10(6),1130. doi: 10.3390/microorganisms10061130. PMID: 35744647; PMCID: PMC9231169.

Park, K.H.; Park, S. J.; Bae, M.H.; Jeong, S.H.; Jeong, M.H.; Lee, N.; Han, Y.M.; Byun, S. Y. Clinical and Laboratory Findings of Nosocomial Sepsis in Extremely Low Birth Weight Infants According to Causative Organisms. J. Clin. Med. 2022, 11(1), 1–10. https://doi.org/10.3390/jcm11010260.

Iqbal-Mirza, S.Z.; Estévez-González, R.; de Ávila, V.S.R.; González, E. de R.; Heredero-Gálvez, E; Julián-Jiménez, A. Predictive factors of bacteraemia in the patients seen in emergency departments due to infections. Revista Espanola de Quimioterapia 2020, 33(1), 32–43. https://doi.org/10.37201/req/075.2019

Gille, J.; Jocovic, J.; Sablotzki, A.; Kremer, T. The predictive role of interleukin 6 in burn patients with positive blood cultures. International Journal of Burns and Trauma, 2021, 11(2), 123–130.

Al-Rawazq, H. S.; Al-rawazq, H.S.; Mohammed, A. K.; Al-Zubaidy, R. H. Bacterial Isolates in Blood culture of children with Septicemia. Journal of The Faculty of Medicine Baghdad. 2012, 54(1), 96–99.

Ibraheem, A. H. Bacterial septicemia in neonates. J. Fac. Med. Baghdad. 2005, 47(2),162-164.

Rasool, L.M. Prevalence of bacteremia among children complaining different kinds of infections under 12 years old in Baghdad. Baghdad Sci. J. 2011, 8(2), 280–285. https://doi.org/10.21123/bsj.8.2.280-285.

MacFaddin, J.F. Biochemical tests for identification of medical bacteria.Lippincott Williams and Wilkins, A wolters Kluwer company. New York, 2000.

Salah, A.; Al-Subol, I.; Hudna, A.; Alhaj, A.; Alqubaty, A.R.; Farie, W.; Sulieman, D.; Alnadhari, O.; Alwajeeh, T.; Alobathani, F.; Almikhlafy, A. and Mahdy, M.A.K. Neonatal sepsis in Sana’a city, Yemen: a predominance of Burkholderia cepacia. BMC Infect. Dis. 2021, 21(1), 1–10. https://doi.org/10.1186/s12879-021-06808-y

Abbas, K.K.; Wifaq, M.; Al-Wattar, M.A.; Jasim, A.A. The common bacterial pathogens isolated from blood culture in paediatric patients. Baghdad Sci. J. 2014, 11(2), 861–864. https://doi.org/10.21123/bsj.11.2.861-864.

Szemraj, M., Grazul, M., Balcerczak, E.; Szewczyk, E. M. Staphylococcal species less frequently isolated from human clinical specimens - Are they a threat for hospital patients? BMC Infect. Dis. 2020, 20(1), 1–10. https://doi.org/10.1186/s12879-020-4841-2

Hooper, D.C. Fluoroquinolone resistance among Gram-positive cocci. Lancet Infect. Dis. 2002, 2: 530–538. DOI: https://doi.org/10.1016/S1473-3099(02)00369-9

Jensen, S.O.; Lyon, B.R. Genetics of antimicrobial resistance in Staphylococcus aureus. Future Microbiol. 2009, 4(5), 565-582. DOI: https://doi.org/10.2217/fmb.09.30

Hooper, D.C.; Jacoby, G.A. (2015). Mechanisms of drug resistance: quinolone resistance. Ann. N Y. Acad. Sci. 2015, 1354(1), 12–31. DOI: https://doi.org/10.1111/nyas.12830

Foster, T.J. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol. Rev. 2017, 41(3), 430–449. DOI: https://doi.org/10.1093/femsre/fux007

Al-Wandawy, A.H.SH. Bacteriological Study of Meningitis Patients in Children. MSc. thesis. College of Education for Pure Science (Ibn Al-Haitham). University of Baghdad 2019, 119.

Downloads

Published

20-Jul-2023

Issue

Section

Biology

Publication Dates