Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
DOI:
https://doi.org/10.30526/36.3.3099Keywords:
The Erlang distribution, Bayes estimation, The posterior density, Posterior mean, Posterior variance, GELF, MSE.Abstract
We are used Bayes estimators for unknown scale parameter when shape Parameter is known of Erlang distribution. Assuming different informative priors for unknown scale parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been compared in terms of their mean-squared error (MSE). We concluded that the best estimators of the scale parameterof the Erlang distribution, based on GELF for the shape parameter (c=1,2,3) under inverse gamma prior with for all samples sizes(n) where the true cases of the Erlang model are and according to the smallest values of MSE
References
1. Haq A.; Dey S.; Bayesian Estimation of Erlang Distribution under Different Prior Distributions. Journal of Reliability and Statistical Studies, 2011,4(1), pp.1-30.
Khan A. H.; Jan T. R.; Bayesian Estimation of Erlang Distribution under Different Generalized Truncated Distributions as Priors. Journal of Modern Applied Statistical Methods. 2012, Vol. 11, No. 2, pp.416-442. DOI: https://doi.org/10.22237/jmasm/1351743180
Bhat B. A.; Kumar P.; Wani M. A.; New Generalization of Erlang Distribution with Bayes Estimation. International Journal of Innovative Research and Review ISSN: 2347 – 4424 (Online). An Online International Journal Available at http://www.cibtech.org/jirr.htm 2016, Vol. 4 (2), pp.14-19/Bhat et al.
Mudasir S.; Ahmad S. P.; Characterization and Information Measures of Weighted Erlang Distribution. Journal of Statistics Applications &Probability Letters, 2017,4, No. 3, 109-122. DOI: https://doi.org/10.18576/jsapl/040302
Mudasir S.; Ahmad S. P.; Parameter Estimation of Weighted Erlang Distribution Using R Software. Mathematical Theory and Modeling. ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online), 2017, Vol.7, No.6, pp.1-21.
Moussa A. A.; Othman S. A.; Reyad H. M.; The Length-Biased Weighted Erlang Distribution. Asian Research Journal of Mathematics. 2017, 6(3): pp.1-15, Article no. ARJOM.35963, ISSN: 2456-477X. DOI: https://doi.org/10.9734/ARJOM/2017/35963
Khan Adil H.; Jan T.R.; Bayesian Estimation of Shape and Scale Parameters of Erlang Distribution. 3rd International Conference on Recent Developments in Science, Humanities and Management Mahratta Chamber of Commerce, Industries and Agriculture, pune (India). 22nd July 2018.www. conferenceword.in. ISBN:978-93-87793-35-4. pp.184-205.
Hincal E. ; Alsaadi S.; Posterior Analysis of Weighted Erlang Distribution. AIP Conference Proceedings 2183, 070023 .2019; https://doi.org/10.1063/1.5136185.
Ahmad K.; Ahmad S. P. ; A Comparative Study of Maximum Likelihood Estimation and Bayesian Estimation for Erlang Distribution and Its Applications. Open access peer-reviewed chapter in Statistical Methodologies. 2019, DOI: http://dx.doi.org/10.5772/ intechopen.85627.
Aijaz A. ; Qurat ul Ain S.; Ahmad A.; Tripathi R.; An Extension of Erlang Distribution with Properties Having Applications In Engineering and Medical-Science.Int. J. Open Problems Compt. Math. .2021, Vol. 14, No. 1, Print ISSN: 1998-6262, Online ISSN: 2079- 0376.
Bickel P.J. ; Doksum, K. A.; Mathematical Statistics: Basic Ideas and Selected Topics. 1977, Holden- Day, Inc., San Francisco.
Ieren T.G.; Abdullahi J.; Properties and Applications of a Two-Parameter Inverse Exponential Distribution with a Decreasing Failure Rate. Pakistan Journal of Statistics. 2020, Vol. 36(3), pp.183-206.
Rivera, P.A.; Calderín-Ojeda, E.; Gallardo, D.I.; Gómez, H.W.; A Compound Class of the Inverse Gamma and Power Series Distributions. Symmetry ,2021, 13, 1328. https:// doi. org/ 10.3390/ sym13081328.
Ahmad A.; Ahmad S.P.; Weighted Analogue of Inverse Gamma Distribution: Statistical Properties, Estimation and Simulation Study; Pak.j.stat.oper.res. 2019, Vol. XV No.1, pp.25-37. DOI: https://doi.org/10.18187/pjsor.v15i1.2238
Achcar JA.; Coelho-Barros EA.; Cuevas JRT; Mazucheli J.; Use of Lèvy Distribution to Analyze Longitudinal Data with a Symmetric Distribution and Presence of Left Censored Data. Communications for Statistical Applications and Methods ,2018, Vol. 25, No. 1, pp.43–60. DOI: https://doi.org/10.29220/CSAM.2018.25.1.043
Calabria R. and Pulcini G.; An Engineering Approach to Bayes Estimation for the Weibull Distribution. Microelectronics Reliability.1994, vol.34, no.5,pp.789–802. DOI: https://doi.org/10.1016/0026-2714(94)90004-3
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms