Biosynthesis, Characterization, Adsorption and Antimicrobial studies of zirconium oxide Nanoparticles Using Punica Granatum Extract

Main Article Content

Lekaa k. Abdul Karem
Angham Tariq Ali
Ewies F. Ewies

Abstract

In this study we using zirconium sulfate, Punica granatum plant extract, and an alkaline medium, to created ZrO2 nanoparticles. They were then characterized using a variety of techniques, including FT-IR, UV-visible, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Debye-Scherrer equation was used to calculate the crystal size in X-ray diffraction and found to be 27.82 nm. The particle size of ZrO2 nanoparticles was determined using atomic force microscopy, scanning electron microscopes, and transmission electron microscopy. Utilizing ZrO2 NPs, the metal ions M (II) = Co, Ni, and Cu were successfully adsorbed, proving that the three metal ions could be removed from the water at the same time. Over the time frame and under the circumstances, Ni(II) has the highest rate of adsorption. Co, Ni, and Cu ions had removal efficiencies of 32.79%, 75.00%, and 30.20%, respectively. Three concentrations of the ZrO2 nanoparticles were tested against two types of bacteria, Escherichia coli and staphylococcus, and one type of fungus, Candida, in various concentrations of (25, 50, and 75) mg/L. The outcomes were contrasted with those attained using the medications Amoxicillin and Metronidazole.

Article Details

How to Cite
Biosynthesis, Characterization, Adsorption and Antimicrobial studies of zirconium oxide Nanoparticles Using Punica Granatum Extract. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 262-273. https://doi.org/10.30526/36.4.3167
Section
Chemistry

How to Cite

Biosynthesis, Characterization, Adsorption and Antimicrobial studies of zirconium oxide Nanoparticles Using Punica Granatum Extract. (2023). Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(4), 262-273. https://doi.org/10.30526/36.4.3167

Publication Dates

References

Rajagopal, G.; Nivetha, A.; Ilango, S.; Muthudevi, G.P.; Prabha, I.; Arthimanju, R. Phytofabrication of Selenium Nanoparticles Using Azolla Pinnata: Evaluation of Catalytic Properties in Oxidation, Antioxidant and Antimicrobial Activities, Journal of Environmental Chemical Engineering 2021, 9, 105483. https://doi.org/10.1016/j.jece.2021.105483.

Fathima, J.B.; Pugazhendhi, A.; Venis, R. Synthesis and Characterization of ZrO2 Nanoparticles-Antimicrobial Activity and Their Prospective Role in Dental Care, Microbial pathogenesis 2017, 1, 245-51. https://doi.org/10.1016/j.micpath.2017.06.039.

da Silva, A.F.; Fagundes, A.P.; Macuvele, D.L.; de Carvalho, E.F.; Durazzo, M.; Padoin, N.; Soares, C.; Riella, H.G. Green Synthesis of zirconia Nanoparticles Based on Euclea Natalensis Plant Extract: Optimization of Reaction Conditions and Evaluation of Adsorptive Properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 20, 123915. https://doi.org/10.1016/j.colsurfa.2019.123915.

Al-Zaqri, N.; Muthuvel, A.; Jothibas, M.; Alsalme, A.; Alharthi, F.A.; Mohana, V. Biosynthesis of Zirconium Oxide Nanoparticles Using Wrightia Tinctoria Leaf Extract: Characterization, Photocatalytic Degradation and Antibacterial Activities. Inorganic Chemistry Communications 2021, 1, 108507. https://doi.org/10.1016/j.inoche.2021.108507.

Kumaresan, M.; Anand, K.V.; Govindaraju, K.; Tamilselvan, S.; Kumar, V.G. Seaweed Sargassum Wightii Mediated Preparation of zirconia (ZrO2) Nanoparticles and Their Antibacterial Activity Against Gram Positive and Gram Negative Bacteria. Microbial pathogenesis 2018, 1, 311-5. https://doi.org/10.1016/j.micpath.2018.08.060

Karunakaran, G.; Suriyaprabha, R.; Manivasakan, P.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Screening of in Vitro Cytotoxicity, Antioxidant Potential and Bioactivity of Nano-and Micro-ZrO2 and-TiO2 Particles. Ecotoxicology and environmental safety 2013, 1, 191-7. https://doi.org/10.1016/j.ecoenv.2013.04.004.

Alsharari S.S.; Alenezi M.A.; Al Tami M.S.; Soliman M. Recent Advances in the Biosynthesis of Zirconium Oxide Nanoparticles and Their Biological Applications. Baghdad Science Journal 2022, 41-57. https://doi.org/10.21123/bsj.2022.7055.

Salavati-Niasari M. ; Dadkhah M.; Davar F. Pure Cubic ZrO2 nanoparticles by Thermolysis of a New Precursor. Polyhedron 2009, 28, 3005-9.

Singh A.K.; Nakate U.T. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia. The Scientific World Journal 2014, 1. https://doi.org/10.1155/2014/349457

Shinde H. M; Bhosale T. T; Gavade N. L; Babar S. B; Kamble R. J; Shirke B. S; Garadkar K. M. Biosynthesis of ZrO2 Nanoparticles from Ficus Benghalensis Leaf Extract for Photocatalytic Activity. Journal of Materials Science: Materials in Electronics 2018, 29,14055-14064.‏ 10.1007/s10854-018-9537-7

Salem, S. S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biological Trace Element Research 2021, 199, 344-370.‏ 10.1007/s12011-020-02138-3.

Sigwadi R.; Dhlamini M. S.; Mokrani T.; Nonjola, P. Effect of Synthesis Temperature on Particles Size and Morphology of Zirconium Oxide Nanoparticle. In: Journal of Nano Research. Trans Tech Publications Ltd 2017, 18-31.‏ https://www.scientific.net/JNanoR.50.18

Raghad, D.H; Abdul Jalill; Maryam M.H.M. Jawad; Ahmed N. Abd. Plants extracts as green synthesis of zirconium oxide nanoparticles. Journal of Gene c and Environmental Resources Conservaon2017,5,6-23.‏ https://www.academia.edu/34736142/Plants_extracts_as_green_synthesis_of_zirconium_oxide_nanoparticles

Karem, L. K. A.; Ali, A. T. Biosynthesis, Characterization, Adsorption and Antimicrobial studies of Manganese oxide Nanoparticles Using Punica Granatum Extract. Baghdad Science Journal 2023, https://doi.org/10.21123/bsj.2023.8183 .

Akhtar K.; Baig J. A.; Kazi T. G.; Afridi H. I.; Talpur F. N.; Solangi I. B.; Samaijo S. Novel fluoride selective voltammetric sensing method by amino phenylboronic acid-zirconium oxide nanoparticles modified gold electrode. Microchemical Journal 2022,174,107073.‏ https://doi.org/10.1016/j.microc.2021.107073.

Rheima AM; Anber AA; Abdullah HI; Ismail AH. Synthesis of alpha-gamma aluminum oxide nanocomposite via Electrochemical Method for Antibacterial Activity. Nano biomed engineering 2021, 13,1-5.

Reczek L.; Michel M.M.; Trach Y.; Siwiec T.; Tytkowska-Owerko M. The Kinetics of Manganese Sorption on Ukrainian Tuff and Basalt-Order and Diffusion Models Analysis. Minerals 2020, 28, 101065. https://doi.org/10.3390/min10121065.

Karimi F; Ayati A; Tanhaei B; Sanati AL; Afshar S; Kardan A;Dabirifar Z; Karaman C. Removal of Metal Ions Using a New Magnetic Chitosan Nano-bio-adsorbent; A Powerful Approach in Water Treatment. Environmental Research 2022, 203, 111753. https://doi.org/10.1016/j.envres.2021.111753.

sadiq Khasro F; Mahmood H.S. Enhancement of Antibacterial Activity of Face Mask with Gold Nanoparticles. Ibn AL-Haitham Journal For Pure and Applied Sciences 2022, 35, 25-31. 10.30526/35.3.2844.

Amer AA; Karem LK. Biological Evaluation and Antioxidant Studies of Nio, Pdo and Pt Nanoparticles Synthesized from a New Schiff Base Complexes. Ibn Al-Haitham Journal For Pure and Applied Sciences 2022, 35 ,170-182. https://doi.org/10.30526/35.4.2864

Habib A.A.S. ; Yousif A.M. Effect of Nano-Zirconium Oxide and Other Applications on Cowpea Seedlings Growth Under T Salt Stress. Iraqi Journal of Science 2018,1006-1011.‏ https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/339

Karem, L. K. A.; Ali, A. T. Biosynthesis, Characterization, Adsorption and Antimicrobial Studies of Vanadium Oxide Nanoparticles Using Punica Granatum Extract. Baghdad Science Journal 2023, https://doi.org/10.21123/bsj.2023.8114.

Abdalsahib, N.M.; Karem L.K.A. Synthesis, Characterization, Antioxidant and Antibacterial Studies for New Schiff Base Complexes Derived from 4-Bromo-O-Toluiodine. International Journal of Drug Delivery Technology 2023, 13, 679-685. http:// 10.25258/ijddt.13.2.33.

Naji, S.H.; Karim, L.K.A., Mousa, F.H. Synthesis, Spectroscopic and Biological Studies of a New Some Complexes with N-Pyridin-2-Ylmethyl-Benzene-1, 2Diamine. Ibn AL-Haitham Journal For Pure and Applied Science 2013, 26, 193-207.‏ https://www.iasj.net/iasj/article/72289 .

Abdalsahib, N.M.; Karem, L.K.A. Preparation, Characterization, Antioxidant and Antibacterial Studies of New Metal (II) Complexes with Schiff Base for 3-amino-1-phenyl-2- pyrazoline-5-one. International Journal of Drug Delivery Technology 2023, 13, 290-296. http://10.25258/ijddt.13.2.33.

Baqer, S.R.; Alsammarraie, A.M.A.; Alias, M.; Al-Halbosiy, M.M.; Sadiq, A.S. In Vitro Cytotoxicity Study of Pt Nanoparticles Decorated TiO2 Nanotube Array. Baghdad Science Journal 2020, 17, 1169-1169. https://doi.org/10.21123/bsj.2020.17.4.1169.

Mohan, B.; Shaalan, N. Synthesis, Spectroscopic, and Biological Activity Study for New Complexes of Some Metal Ions with Schiff Bases Derived From 2-Hydroxy Naphthaldehyde with 2-amine benzhydrazide. Ibn AL-Haitham Journal For Pure and Applied Sciences 2023, 36, 208-224.‏ http:/doi.org/10.30526/36.1.2978.

Karem, L.K.A.; Radhi, I.M; Mohammed,S.S. Biological Activity of Complexes of Some Amino Acid: Review. Indian Journal of Forensic Medicine & Toxicology 2019, 14, 2254-2261. https://doi.org/10.37506/ijfmt.v14i4.11888 .

Mohammed,S.S.; Karem,L.K.A.; Salman,S.A.; Al-Darwesh, M.Y. Spectroscopic, Thermodynamic and Kinetic Studies of Ligand Complexes Derived From 2-Aminothiophenol. Biochemical and Cellular Archives 2020, 20, 6435–6439. https://connectjournals.com/03896.2020.20.6329 .

Mohammed, S.S.; Aziz, N. M.; Karem, L.K.A. Preparation and Diagnostics of Schiff Base Complexes and Thermodynamic Study for Adsorption of Cobalt Complex on Iraqi Attapulgite Clay Surface. Egyptian Journal of Chemistry 2021, 64, 6913-6920. 10.21608/EJCHEM.2021.75540.3703.