A Brief Review: Some Interesting Methods of Synthesis Chromene Derivatives as Bioactive Molecules

Main Article Content

Zainab Sallal Abdulsahib
Raied Mustafa Shakir

Abstract

Chromene is considered a fused pyran ring with a benzene ring, which is found in many plants and is part of many important compounds such as anthocyanidins, anthocyanins, catechins, and flavanones. These compounds are included under the headings "flavonoids" and "iso-flavonoids." These compounds are well known as bioactive molecules with wide medicinal uses. According to these pharmacokinetic characteristics, many researchers are giving more attention to this type of compound and its derivatives. Many chromene derivatives have been synthesized to study their biological effects for the treatment of many diseases. Furthermore, the researcher displayed wide interest in finding new methods for synthesizing chromene derivatives. These methods depend on utilizing a new catalyst to increase the yield of this reaction or reduce the time of the reaction. On the other hand, new methods were found by using a new reactant and a new substrate. This review will present the most recent important methods for the synthesis of chromene derivatives as well as an examination of their biological activity. 

Article Details

How to Cite
[1]
Zainab Sallal Abdulsahib and Raied Mustafa Shakir 2023. A Brief Review: Some Interesting Methods of Synthesis Chromene Derivatives as Bioactive Molecules. Ibn AL-Haitham Journal For Pure and Applied Sciences. 36, 2 (Apr. 2023), 276–288. DOI:https://doi.org/10.30526/36.2.3180.
Section
Chemistry

Publication Dates

References

Malquichagua Salazar, K. J.; Delgado Paredes, G. E.; Lluncor, L. R.; Young, M. C.; Kato, M. J., Chromenes of polyketide origin from Peperomia villipetiola. Phytochemistry 2005, 66, (5), 573-9.

Presley, C. C.; Valenciano, A. L.; Fernández-Murga, M. L.; Du, Y.; Shanaiah, N.; Cassera, M. B.; Goetz, M.; Clement, J. A.; Kingston, D. G. I., Antiplasmodial Chromanes and Chromenes from the Monotypic Plant Species Koeberlinia spinosa. J. Nat. Prod. 2018, 81, (3), 475-483.

AL-SHMGANI, H. S.; SHAKIR;, R. M.; NASER;, A. W., Design, Synthesis, Docking, Antitumor Screening, And Absorption, Distribution, Metabolism, And Excretion Prediction Of New Hesperdin Derivative. Asian J Pharm Clin Res 2020, 13, 24-31.

Mohammed, Z. H.; Ibraheem, R. M., Anti-oxidant Activity of Methanol Extracts of Arum maculatum L. and Physalis peruviana L. Plants. Ibn AL-Haitham Journal For Pure and Applied Sciences 2017, 28, (2), 1-7.

de Mello Andrade, J. M.; Fasolo, D., Chapter 20 - Polyphenol Antioxidants from Natural Sources and Contribution to Health Promotion. In Polyphenols in Human Health and Disease, Watson, R. R.; Preedy, V. R.; Zibadi, S., Eds. Academic Press: San Diego, 2014; pp 253-265.

Darweesh, A. S., Antifungal Activity of Propolis Ethanol Extract Against Botrytis cinerea, Altrnaria sp Which Caused Many Plant Diseases. Ibn AL-Haitham Journal For Pure and Applied Sciences 2017, 23, (1), 68-80.

Al-Assa;, I.; Khazem, M., Antioxidant Activity of Total phenols and Flavonoids extracted from Echinops polycerasroots grown in Syria. Iraqi J Pharm Sci. 2021, 30, (2), 261-268.

Braga, T. C.; Silva, M. M.; Nascimento, E. O. O.; Dantas da Silva, E. C.; de Freitas Rego, Y.; Mandal, M.; Alves de Souza, Z.; Tasca Góis Ruiz, A. L.; Ernesto de Carvalho, J.; Martins, F. T.; Figueiredo, I. M.; Mendonça de Aquino, T.; Moreira da Silva, C.; Mandal, B.; Brahmachari, G.; Caldas Santos, J. C.; de Fátima, Â., Synthesis, anticancer activities and experimental-theoretical DNA interaction studies of 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile. European Journal of Medicinal Chemistry Reports 2022, 4, 100030.

Anaikutti, P.; Selvaraj, M.; Prabhakaran, J.; Pooventhiran, T.; Jeyakumar, T. C.; Thomas, R.; Makam, P., Indolyl-4H-chromenes: Multicomponent one-pot green synthesis, in vitro and in silico, anticancer and antioxidant studies. J. Mol. Struct. 2022, 1266, 133464.

Mirza‐Aghayan, M.; Mohammadi, M.; Boukherroub, R., Fullerene‐C60/NH2: A recyclable heterogeneous catalyst for the green synthesis of chromene and pyrimidine derivatives and antibacterial evaluation. J. Heterocycl. Chem. 2022, 59, (6), 1102-1115.

Andreeva-Gateva, P.; Tchekalarova, J.; Angelova, V.; Marchev, S.; Voynikov, Y.; Vassilev, N.; Vlaskovska, M.; Surcheva, S., Preclinical Screening of Coumarin and 2h-Chromene Substituted Hydrazide-Hydrazone Derivatives, As Potential Anticonvulsants. Clinical Therapeutics 2017, 39, (8, Supplement), e78-e79.

Kakumu, Y.; Thi Nguyen, M. T.; Mitsunaga, T., Molecular networking-based discovery of anti-inflammatory chromene dimers from Melicope pteleifolia. Phytochemistry 2022, 202, 113322.

Khan, G. A.; Naikoo, G. A.; War, J. A.; Sheikh, I. A.; Pandit, U. J.; Khan, I.; Harit, A. K.; Das, R., An Efficient Green Synthesis of Some Functionalized Spiro Chromene Based Scaffolds as Potential Antitubercular Agents. J. Heterocycl. Chem. 2018, 55, (3), 699-708.

Oliveira-Pinto, S.; Pontes, O.; Baltazar, F.; Costa, M., In vivo efficacy studies of chromene-based compounds in triple-negative breast cancer – A systematic review. Eur. J. Pharmacol. 2020, 887, 173452.

Kasralikar, H. M.; Jadhavar, S. C.; Bhusare, S. R., Synthesis and molecular docking studies of oxochromenyl xanthenone and indolyl xanthenone derivatives as anti-HIV-1 RT inhibitors. Bioorganic & Medicinal Chemistry Letters 2015, 25, (18), 3882-3886.

Halawa, A. H.; Elaasser, M. M.; El Kerdawy, A. M.; Abd El-Hady, A. M. A. I.; Emam, H. A.; El-Agrody, A. M., Anticancer activities, molecular docking and structure–activity relationship of novel synthesized 4H-chromene, and 5H-chromeno[2,3-d]pyrimidine candidates. Medicinal Chemistry Research 2017, 26, (10), 2624-2638.

Najar, A. H.; Hossaini, Z.; Abdolmohammadi, S.; Zareyee, D., Green Synthesis and Investigation of Biological Activity of Chromene Derivatives. Polycyclic Aromat. Compd. 2022, 42, (8), 5104-5122.

Mashhadinezhad, M.; Mamaghani, M.; Rassa, M.; Shirini, F., A Facile Green Synthesis of Chromene Derivatives as Antioxidant and Antibacterial Agents Through a Modified Natural Soil. 2019, 4, (17), 4920-4932.

Kumaravel, K.; Vasuki, G., Four-component catalyst-free reaction in water: Combinatorial library synthesis of novel 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives. Green Chemistry 2009, 11, (12), 1945-1947.

Kuchukulla, R. R.; Desagoni, M.; Narra, S. R.; Goutham, S. K.; Banda, N., Regioselective Synthesis of 2-(Trifluoromethyl)-3-ethoxycarbonyl-4-(2-oxo-2-arylethyl)-4H-chromene Derivatives by [3, 3] Sigmatropic Rearrangement. 2017, 2, (35), 11545-11547.

Shaabani, A.; Sarvary, A.; Soleimani, E.; Rezayan, A. H.; Heidary, M., A novel method for the synthesis of substituted 3,4-dihydrocoumarin derivatives via isocyanide-based three-component reaction. Molecular Diversity 2008, 12, (3), 197.

Magar, R. L.; Thorat, P. B.; Jadhav, V. B.; Tekale, S. U.; Dake, S. A.; Patil, B. R.; Pawar, R. P., Silica gel supported polyamine: A versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J. Mol. Catal. A: Chem. 2013, 374-375, 118-124.

Gampa, M.; Padmaja, P.; Aravind, S.; Reddy, P. N., An efficient one-pot synthesis of indolyl-4H-chromene derivatives. Chemistry of Heterocyclic Compounds 2021, 57, (12), 1176-1180.

Yu, X.; Lan, W.; Li, J.; Bai, H.; Qin, Z.; Fu, B., Enantioselective one-pot synthesis of 4H-chromene derivatives catalyzed by a chiral Ni(ii) complex. RSC Advances 2020, 10, (72), 44437-44441.

Ma, W.; Ebadi, A. G.; sabil, M. s.; Javahershenas, R.; Jimenez, G., One-pot synthesis of 2-amino-4H-chromene derivatives by MNPs@Cu as an effective and reusable magnetic nanocatalyst. RSC Advances 2019, 9, (23), 12801-12812.

Kale, A.; Bingi, C.; Sripada, S.; Ganesh Kumar, C.; Atmakur, K., A simple, one pot synthesis of furo[3,2-c]chromenes and evaluation of antimicrobial activity. Bioorg. Med. Chem. Lett. 2016, 26, (20), 4899-4902.

Doshi, J. M.; Tian, D.; Xing, C., Structure-activity relationship studies of ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (HA 14-1), an antagonist for antiapoptotic Bcl-2 proteins to overcome drug resistance in cancer. Journal of medicinal chemistry 2006, 49, (26), 7731-9.

Mansoor, S. S.; Logaiya, K.; Aswin, K.; Sudhan, P. N., An appropriate one-pot synthesis of 3,4-dihydropyrano[c]chromenes and 6-amino-5-cyano-4-aryl-2-methyl-4H-pyrans with thiourea dioxide as an efficient, reusable organic catalyst in aqueous medium. Journal of Taibah University for Science 2015, 9, (2), 213-226.

Gholipour, S.; Davoodnia, A.; Nakhaei-Moghaddam, M., Synthesis, characterization, and antibacterial evaluation of new alkyl 2-amino-4-aryl-4H-chromene-3-carboxylates. Chemistry of Heterocyclic Compounds 2015, 51, (9), 808-813.

Niknam, K.; Jamali, A., Silica-Bonded N-Propylpiperazine Sodium n-Propionate as Recyclable Basic Catalyst for Synthesis of 3,4-Dihydropyrano[c]chromene Derivatives and Biscoumarins. Chinese Journal of Catalysis 2012, 33, (11), 1840-1849.

Wang, H.-J.; Lu, J.; Zhang, Z.-H., Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatshefte für Chemie - Chemical Monthly 2010, 141, (10), 1107-1112.