Anti-Oxidant and Anti-Microbial Activities of [ZnO: CoO/ Eugenol] and [ZnO: Fe2O3/ Eugenol] Nanocomposites
Main Article Content
Abstract
Metal oxide nanocomposites (MONCs) manufacturing is increasingly gaining popularity. The primary cause of this is the broad range of applications for such materials, which include fuel cells, photovoltaics, cosmetics, medicine, semiconductor packing materials, water treatment, and catalysts. Due to their size, stability, high surface area, catalytic activity, simplicity in fabrication, and selectivity for particular reactions. The MONCs with various morphologies have been created by physical, chemical, and biological processes, such as sol-gel, hydrothermal, co-precipitation, solvothermal, and microwave irradiation. Eugenol (4-allyl-2-methoxyphenol) is a major component of clove essential oil and it was found in various plant groups, has been widely utilized, and famously stated to have a variety of important biological activities. It is a good starting material for the synthesis of a wide variety of derivatives with different activity. Due to the presence of many functional groups in its structure, including allyl (-CH2-CH=CH2), phenol (-OH), and methoxy (-OCH3). The eugenol was taken with metal oxides (zinc cobalt oxides ZnO: CoO) to synthesis [ZnO: CoO/ Eug] and (zinc ferric oxides ZnO: Fe2O3) to synthesis [ZnO: Fe2O3/ Eug] as nanocomposites by hydrothermal method and characterization the compounds using: (FT-IR, AFM, SEM, EDX, XRD) techniques. Then, they tested their biological activities through antimicrobial and antioxidant.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Madkour, L.H. Introduction to nanotechnology (NT) and nanomaterials (NMs). Nanoelectronic Materials, 2019, 1-47. Springer, Cham. http://dx.doi.org/10.1007/978-3-030-21621-4_1.
Atiya, M.A.; Hassan; A.K.; Kadhim, F.Q. Green synthesis of copper nanoparticles using tea leaves extract to remove Ciprofloxacin (CIP) from aqueous media. IJS, 2021, 62(9), 2833-2854. https://doi.org/10.24996/ijs.2021.62.9.1.
Komarneni, S. Feature article. Nanocomposites. J. Mater. Chem., 1992, 12(2), 1219-1230. https://doi.org/10.1039/JM9920201219. DOI: https://doi.org/10.1039/jm9920201219
Camargo, P.H.C.; Satyanarayana, K.G.; Wypych, F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res 2009, 12, 1-39. http://dx.doi.org/10.1590/S1516-14392009000100002. DOI: https://doi.org/10.1590/S1516-14392009000100002
Farhan, R.Z.; Ebrahim, S.E. Preparing nanosilica particles from rice husk using precipitation method. Baghdad Sci. J 2021, 18(3), 494-500. https://doi.org/10.21123/bsj.2021.18.3.0494.
Zhang, H.; Chen, G. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol− gel method. Environ. Sci. Technol. 2009, 43(8), 2905-2910.
https://doi.org/10.1021/es803450f. DOI: https://doi.org/10.1021/es803450f
Abdulredha, S.T.; Abdulrahman, N.A. Cu-ZnO Nanostructures synthesis and characterization. IJS, 2021, 62(3),708-717. https://doi.org/10.24996/ijs.2021.62.3.1.
Hassan, E.; Al-saidi, M.H.; Rana, J.A.; Thahab, S.M. Preparation and characterization of ZnO nano-sheets prepared by different depositing methods. IJS, 2022, 63(2),538-547.
https://doi.org/10.24996/ijs.2022.63.2.11.
Nisar, M.F.; Khadim, M.; Rafiq, M.; Chen, J.; Yang, Y.; Wan, C.C. Pharmacological properties and health benefits of eugenol: a comprehensive review. Oxid Med Cell Longev 2021, 2021, 2497354. https://doi: 10.1155/2021/2497354.
Thirukumaran, P.; Shakila, A.; Muthusamy, S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. Rsc Advances 2014, 16(4), 7959-7966.
https://doi.org/10.1039/C3RA46582A. DOI: https://doi.org/10.1039/c3ra46582a
Aburel, O.M.; Pavel, I.Z.; Dănilă, M.D.; Lelcu, T.; Roi, A.; Lighezan, R.; Muntean, D.M.; Rusu, L.C. Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. Oxid Med Cell Longev., 2021, 3165159. https://doi.org/10.1155/2021/3165159.
Nurdjannah, N.; Bermawie, N. Cloves. Handbook of Herbs and Spices. 2nd Edition. Woodhead Publishing, 2012, 1, 197-215. DOI: https://doi.org/10.1533/9780857095671.197
https://www.academia.edu/13434452/Handbook_of_herbs_and_spices_Volume_1_KV_Peter.
Ulanowska, M.; Olas, B. Biological properties and prospects for the application of eugenol—A review. Int. J. Mol. Sci., 2021, 22(7), 3671. https://doi: 10.3390/ijms22073671.
Sethuram, L.; Thomas, J.; Mukherjee, A.; Chandrasekaran, N. Eugenol micro-emulsion reinforced with silver nanocomposite electrospun mats for wound dressing strategies. Mater Adv., 2021, 2(9), 2971-2988. https://doi.org/10.1039/D1MA00103E.
Thanh Chi, N.T.; Da, T.T.; Ha, N.V.; Dinh, N.H. Synthesis and spectral characterization of platinum (II) complexes containing eugenol, a natural allylphenol. J Coord Chem., 2017, 70(6), 1008-1019. http://dx.doi.org/10.1080/00958972.2017.1281917. DOI: https://doi.org/10.1080/00958972.2017.1281917
Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer properties of eugenol: A Review. Molecules, 2021, 26(23), 7407. https://doi.org/10.3390/molecules26237407.
Zhou, H.; Fu, W.; Muhammad, M.; Xie, M.; Xie, E.; Han, W. Self-assembled microspheres composed of porous ZnO/CoO nanosheets for aqueous hybrid supercapacitors. J Phys D Appl Phys., 2019, 52(50), 505501.
https://ui.adsabs.harvard.edu/link_gateway/2019JPhD...52X5501Z/doi:10.1088/1361-6463/ab4140.
Abid, M.A.; Abid, D.A.; Aziz, W.J.; Rashid, T.M. Iron oxide nanoparticles synthesized using garlic and onion peel extracts rapidly degrade methylene blue dye. Physica B Condens Matter, 2021, 622(1), 413277. http://dx.doi.org/10.1016/j.physb.2021.413277.
Wang, H.; Wang, M.; Tang, Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Materials, 2018, 13, 1-7. DOI: https://doi.org/10.1016/j.ensm.2017.12.022
https://www.sciencedirect.com/science/article/pii/S240582971730644X.
Yousaf, S.A.; Ikram, M.; Ali, S. Significantly improved efficiency of organic solar cells incorporating Co3O4 NPs in the active layer. Applied Nanoscience 2018, 8(3), 489-497. https://ui.adsabs.harvard.edu/link_gateway/2018ApNan...8..489Y/doi:10.1007/s13204-018-0726-8. DOI: https://doi.org/10.1007/s13204-018-0726-8
Rashid, T.M.; Nayef, U.M.; Jabir, M.S.; Mutlak, F.A. Synthesis and characterization of Au: ZnO (core: shell) nanoparticles via laser ablation. optik., 2021, 244(24), 167569.
http://dx.doi.org/10.1016/j.ijleo.2021.167569.
Vinoth, V.; Subramaniyam, G.; Anandan, S.; Valdés, H.; Manidurai, P. Non-enzymatic glucose sensor and photocurrent performance of zinc oxide quantum dots supported multi-walled carbon nanotubes.Mater. Sci. Eng., 2021, 265, 115036. https://doi.org/10.1016/j.mseb.2020.115036.
Gulina, L.; Tolstoy, V.; Kuklo, L.; Mikhailovskii, V.; Panchuk, V.; Semenov, V. Synthesis of Fe (OH)3 microtubes at the gas–solution interface and their use for the fabrication of Fe2O3 and Fe microtubes. Eur. J. Inorg. Chem., 2018, 17, 1842-1846. https://doi.org/10.1002/ejic.201800182. DOI: https://doi.org/10.1002/ejic.201800182
Shamhari, N.M.; Wee, B.S.; Chin, S.F.; Kok, K.Y. Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chim Slov., 2018, 65(3), 578-585.
http://dx.doi.org/10.17344/acsi.2018.4213.
Dhoot, G.; Auras, R.; Rubino, M.; Dolan, K.; Soto-Valdez, H. Determination of eugenol diffusion through LLDPE using FTIR-ATR flow cell and HPLC techniques. Polymer, 2009, 50(6), 1470-1482. https://doi.org/10.1016/j.polymer.2009.01.026. DOI: https://doi.org/10.1016/j.polymer.2009.01.026
Mahapatra, S.K.; Roy, S. Phytopharmacological approach of free radical scavenging and anti-oxidative potential of eugenol and Ocimum gratissimum Linn. Asian Pac J Trop Biomed., 2014, 7S1, 391-397. https://doi.org/10.1016/s1995-7645(14)60264-9. DOI: https://doi.org/10.1016/S1995-7645(14)60264-9
Matykiewicz, D.; Skórczewska, K. Characteristics and Application of Eugenol in the Production of Epoxy and Thermosetting Resin Composites: A Review. Materials, 2022, 15(14), 4824.
https://doi.org/10.3390/ma15144824.
Govindasamy, R.; Raja, V.; Singh, S.; Govindarasu, M.; Sabura, S.; Rekha, K.; Rajeswari, V.D.; Alharthi, S.S.; Vaiyapuri, M.; Sudarmani, R.; Jesurani, S. Green synthesis and characterization of cobalt oxide nanoparticles using Psidium guajava leaves extracts and their photocatalytic and biological activities. Molecules, 2022, 27(17), 5646. https://doi.org/10.3390/molecules27175646.
Mohammadi, S.Z.; Khorasani-Motlagh, M.; Jahani, S.; Yousefi, M. Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. Int J Biomed Nanosci Nanotechnol., 2012, 8(2), 87-92. https://www.ijnnonline.net/article_3909.html.
Sankadiya, S.; Oswal, N.; Jain, P. and Gupta, N. Synthesis and characterization of Fe2O3 nanoparticles by simple precipitation method. AIP Conf Proc., 2016, 1724(1), 020064.
https://doi.org/10.1063/1.4945184. DOI: https://doi.org/10.1063/1.4945184
Abbey, T.C.; Deak, E. What's new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin Microbiol Newsl 2019, 41(23), 203-209.
https://doi.org/10.1016/j.clinmicnews.2019.11.002.
Maged, A.S.; Ahamed, L.S. Synthesis of new heterocyclic derivatives from 2-furyl methanethiol and study their applications. Eurasian Chem. Commun. 2021, 3, 461-476.
https://doi: 10.22034/ecc.2021.279489.1158.