Determining of Efficiency For The N749 Dye contact with TiO2 In Dye Sensitized Solar Cell

Main Article Content

Naeam Nahi
Hadi J. M. Al-Agealy
Hossain Milani Moghaddam

Abstract

In this research, we investigate and evaluate the efficiency of a hetero junction N749-  device based on a simple donor-acceptor model for electron transfer. Electron transfer from a photo-excited N749 sensitized into a wide-band gap  is the basic charge separation in dye-sensitized solar cells, or "DSSCs". Due to the understanding of the current of the DSSCs functioning mechanism, the energy levels of the hetero junction N749-  device surrounded by DCM solvent as polar media must be continuum levels. The current-voltage (J-V) characteristics of the N749- device are calculated in two concentrations at room temperature (T=300 k) and 100   irradiation. The fill factor and efficiency of the device are found to be 0.134 and 6.990 for concentration  compared to 0.146 and 9.974 for concentration . The efficiency of the N749-  device is in agreement with experimental results. It also offers a rational for the suggestion to use the application of N749-  high-performance solar cells.

Article Details

How to Cite
Determining of Efficiency For The N749 Dye contact with TiO2 In Dye Sensitized Solar Cell . (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 187-197. https://doi.org/10.30526/37.1.3235
Section
Physics

How to Cite

Determining of Efficiency For The N749 Dye contact with TiO2 In Dye Sensitized Solar Cell . (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 187-197. https://doi.org/10.30526/37.1.3235

Publication Dates

References

Bo, C.; Yongjian, Z.; Junfeng, F.; Cong, H.; Tianyi, M.; Hui, P.;Highly efficient g-C3N4 supported ruthenium catalysts for the catalytic transfer hydrogenation of levulinic acid to liquid fuel g-valerolactone, Renewable Energy 2021,177 , 652 - 662.

Jie, D.; Yafeng, L.;Junxiu, W.; Yuan, J. C.; Mingdeng, W.; Improving the photovoltaic performance of Zn2SnO4 solar cells by doping Sr2+/Ba2+ ions: Efficient electron injection and transfer" Solar Energy. 2018, 165,122–130 .

Tajamul, H. S.; Wei, W.; Techno economic Analysis of Dye Sensitized Solar Cells (DSSCs) with WS2/Carbon Composite as Counter Electrode Material Inorganics 2022,10,191. https://doi.org/10.3390/inorganics10110191.

Hadi, J. M.; RafahI.,N. A.; Electron Transfer At Semiconductor / Liquid Interfaces Ibn Al- Haitham J. For Pure & Appl. Sci, 2009,22,2.

Hadi, J. M.; Al-Hakany, J. S.; theoretical calculation of rate constant of electron transfer accros N3/TiO2 Sensitized interface solar cell. Ibn Al- Haitham J. For Pure & Appl. Sci , 2012,25, 2, 160-169,

Hadi, J. M.; Alshafaay, B.; Mohsin, A. H.; Ahmed, M. A.; Abbas, K. S.; Raad, H. M.; Rawnaq, Q. G.; Shatha, H. M.; Theoretical Discussion of Electron Transport Rate Constant TCNQ / Ge and TiO2 System . IOP Conf. Series: Journal of Physics: Conf. Series. 2018, 1003 . 012122.

Hadi, J. M.; Mohsin. A. H.; Mudhar, S. A.; Rafah, I. N.; Sarab, S.; A Theoretical Study of Charge Transport y at Au/ ZnSe and Au/ZnS Interfaces Devices . Ibn Al- Haitham J. For Pure & Appl. Sci. 2014, 27, 1-13

Hadi, .J. M.; Muhsin .A. H.; Calculated of the Rate Constant of Electron Transfer in TiO2-Safranine Dye System . Ibn Al- Haitham J. For Pure & Appl. Sci , 2011,24(3), 23- 33

Michael, G.; ReviewDye-sensitized solar cells "Journal of Photochemistry and Photobiology C: Photochemistry Reviews . 2003, 4 , 145–153.

Villanueva, C. J.; Oskam, G.; Anta, J. A.; A simple numerical model for the charge transport and recombination properties of dye-sensitized solar cells: A comparison of transport-limited and transfer-limited recombination. Solar Energy Materials & Solar Cells. 2010, 94, 45–50 .

Aghazada, S.; Nazeeruddin, M. K.; Ruthenium complexes as sensitizers in dye-sensitized solar cells. Inorganics. 2018,6, 52.

Quanyou , F.; Hong, W.; Gang, Z.; Zhong, W.; Effect of deoxycholic acid on performance of dye-sensitized solar cell based on black dye. Front. Optoelectron. China 2011, 4, 1, 80–86. DOI: 10.1007/s12200-011-0209-y.

Deng, K.; Cole, J. M.; Rawle, J.L.; Nicklin, C.; Chen, H.; Yanguas-Gil, A.; Elam, J.W.; Stenning, G.B. Dye nanoaggregate structures in MK-2, N3, and N749 dye center dot center dot center dot TiO2 interfaces that represent dye-sensitized solar cell working electrodes. Acs Appl. Energy Mater. 2020, 3, 900–914.

Muhammad, T.; Ikram, U. D.; Muhammad, Z.; Fakhra, A.; Fazal, W.; Zahid, G.; Mahidur, R. S.; Sajad, Ali.; Sawal, H.; Md A.; Ioannis Kymissis Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications . Coatings 2022, 12, 1163. https://doi.org/10.3390/coatings12081163

Yaxin, D.; Shuxian, L.; Xin, L.; Rui, W.; HI-assisted fabrication of Sn-doping TiO2 electron transfer layer for air-processed perovskite solar cells with high efficiency and stability. Solar Energy Materials & Solar Cells. 2020 ,215 , 110594.

Kun-Mu, L.; Vembu, S.; Kuo-Chuan, H.; A study on the electron transport properties of TiO2 electrodes in dye-sensitized solar cells. Solar Energy Materials & Solar Cells 2007, 23 1416–1420 .

Saeed, U. K.; Giacomo, L.; Xiao, L.; Michael, A.; Fusella, G.; D’Avino Luca Muccioli, Alyssa N. Brigeman, Bjoern Niesen, Terry Chien-Jen Yang, Yoann Olivier, Jordan T. Dull, Noel C. Giebink, David Beljonne, and Barry P. Rand"Multiple Charge Transfer States in Donor−Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets"Chem. Mater. 2019, 31, 6808−6817.

Manjeev, S.; Ravi, K. K.; Theoretical exploration of 1,3-Indanedione as electron acceptor-cum-anchoring group for designing sensitizers towards DSSC applications . Solar Energy. 2022, 237, 456–469.

Ali, K.; Fatemeh, R. A.; Mohammad, H. A.; Generation and combination of the solar cells: A current model review . Energy Sci Eng. 2019, 1–18.

Roghayeh, F.; Hossain, M. M.; Davood, F.; Tuning the spin transport properties of ferrocene-based single molecule junctions by different linkers Chemical Physics Letters. 2018. 704, 37–44

Taif, S. A.; Mohammad, H. J.; Hadi. J. M.; Al-Agealy, Fatimah, B. A.; Chi, C. Y.; An Investigation of the Fill Factor and Efficiency of Molecular Semiconductor Solar Cells. Materials Science Forum ,2015 ,1039,

Sarmad, S. A.; Hadi, J. M.; Saadi, R. A.; Theoretical Evaluation of Flow Electronic Rate at Au /TFB Interface . Journal of Physics: Conference Series . 2021,1879 ,032096 IOP Publishing doi:10.1088/1742-6596/1879/3/032096.

Al-Agealy, H. J,; Hassoni, M. A.; Atheoretical study of the effect of the solvent tyoe on the reorganization energies of dye /semiconductor system interface. Ibn Al- Haitham J. For Pure & Appl. Sci, 2010, 23, 3, 51-57.

Hadi, J. M.; Al-Agealy. Mohammed, Z. F.; Electron Transfer At Metal/Molecule Interface . Ibn Al- Haitham J. For Pure & Appl. Sci. 2013, 26 ,3, 22-34.

William, J. R.; Arnel, M. F.; Nathan, S. L.; Fermi Golden Rule Approach to Evaluating Outer-Sphere Electron-Transfer Rate Constants at Semiconductor/Liquid Interfaces. J. Phys. Chem. B 1997, 101, 11152-11159.

Christophe, B.; Gerrit, B.; Emad, M.; Anders, H.; Interfacial Electron-Transfer Dynamics in Ru(tcterpy)(NCS)3-Sensitized TiO2 Nanocrystalline Solar Cells, J. Phys. Chem. B 2002, 106, 49, 12693–12704.DOI:10.1021/jp0200268

Methaq, A. R.; Hadi, J. M.; Al-Agealy Theoretical calculation of the electronic current at N3 contact with TiO2 bsolar cell devices AIP Conference Proceedings. 2022, 2437, 020060 https://doi.org/10.1063/5 .0092690,2437 ,020060,2022.

William, M. H.; CRC Handbook of Chemistry and Physics. First Published2014eBook Published30 June 2014 Pub. Location Boca Raton Imprint CRC Press DOIhttps://doi.org/10.1201/b17118.

Yow-Jon, L.; Shih-Hung, Y.; Carrier transport and photoresponse for heterojunction diodes based on the reduced graphene oxide-based TiO2 composite and p-type Si. Appl. Phys. A .2014, 116,91–95 DOI 10.1007/s00339-013-8166-5

Zhe, X.; Jihuai, W.; Tongyue, W.; Quanlin, B.; Xin, H.; Zhang, L.;Jianming Lin, Miaoliang Huang, Yunfang Huang, and Leqin Fan. Tuning the Fermi Level of TiO2 Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells, Energy Technol. 2017, 5, 1820–1826.

Mohsen, S.; Mohaddeseh, A.; Mohammad, R. M.; First principles study of hydrogen doping in anatase TiO2i Eur. Phys. J. Appl. Phys. 2014,67,30401.DOI: 10.1051/epjap/2014130582 .

Hadi, J. M.; Al-Agealy, Nada, A. S.; Theoretical studies of el4ctronic transition characteristics of senstizer molecule dye N3-SnO2 semiconductor interface . AIP Conference Proceedings. 2022, 2437(1),020062

Jiawei, Z.; Hangtian, Z.; Qichen, S.; Zhiwei, D.; Jun, M.; Zhifeng, R.; Gang, C.; Mobility enhancement in heavily doped semiconductors via electron cloaking. Nature Communications. 2022, 13,2482 https://doi.org/ 10. 1038 /s41467-022-29958-2 .

Ganesh, K.; Ramesh, K. C.; Suresh, T.; Jae, H. Kim, J. Ja.; Malapaka, C.; Jae, H. J.; A New Series of EDOT Based Co-Sensitizers for Enhanced Efficiency of Cocktail DSSC:A Comparative Study of Two Different Molecules 2019, 24, 3554. doi:10.3390/molecules24193554.