Modification, Characterization of New Thiazolidinone and Oxazolidinone Derived from Levofloxacin and Evaluation of Anti-Oxidant

Main Article Content

Mustafa Moaied Rabeaa
Muna Ismael Khalaf
Farouk Abdulla Kandil

Abstract

The research study included the synthesis of a new series of heterocyclic derivatives containing the antibiotic Levofloxacin. The first way provides for the reaction of  Levofloxacin with thionyl chloride in benzene as a solvent to give an acid chloride derivative. A new class of acid hydrazide synthesized from Levofloxacin was studied. Schiff bases were produced via the reaction of acid hydrazide with substituted aromatic ketones in methanol. The next stage involved the response of Schiff bases with thioglycolic acid and mono chloroacetic acid in DMF to produce derivatives of the antibiotic levofloxacin that have five heterocyclic members, including the derivatives thiazolidine-4-one and oxazolidine-5-one. The FTIR, 1HNMR, and 13CNMR spectra methods were used to confirm the structures of newly synthesized compounds. Also, the antioxidant properties of the synthetic compounds were evaluated in vitro. According to this study, levofloxacin-derived compounds have higher antioxidant capacities than ascorbic acid (vitamin C), and the medication also acts as an anti-inflammatory for respiratory infections.

Article Details

How to Cite
[1]
Moaied Rabeaa, M. et al. 2024. Modification, Characterization of New Thiazolidinone and Oxazolidinone Derived from Levofloxacin and Evaluation of Anti-Oxidant. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 1 (Jan. 2024), 283–297. DOI:https://doi.org/10.30526/37.1.3240.
Section
Chemistry

Publication Dates

References

El-Malah, A.; Youssef, A.; Ismail, M.; Kamel, M.; Mahmoud, Z. New promising levofloxacin derivatives: Design, synthesis, cytotoxic activity screening, Topo2β polymerase inhibition assay, cell cycle apoptosis profile analysis. Bioorganic chemistry, 2021, 113, 105029.

https://doi.org/10.1016/j.bioorg.2021.105029.

Mohammadhosseini, N.; Alipanahi, Z.; Alipour, E.; Emami, S.; Faramarzi, M. A.; Samadi, N.; Khoshnevis, N.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of novel levofloxacin derivatives containing a substituted thienylethyl moiety. DARU Journal of Pharmaceutical Sciences, 2012, 20, 1-6. https://doi:10.1186/2008-2231-20-16. DOI: https://doi.org/10.1186/2008-2231-20-16

Norouzbahari, M.; Salarinejad, S.; Güran, M.; Şanlıtürk, G.; Emamgholipour, Z.; Bijanzadeh, H. R.; Toolabi, M.; Foroumadi, A. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety. DARU Journal of Pharmaceutical Sciences, 2020, 28, 661-672. https://doi:10.1007/s40199-020-00373-6.

Salman, B.S.; Ahmed, M.R. Synthesis and characterization of new Thiazolidinone and Oxazolidinone heterocyclic derivatives from 2-Marcapto-1,3,4-Thiadiazole compounds. Chemical Methodologies, 2022, 6(12),997-1006. https://doi.org/10.22034/chemm.2022.357813.1601.

Nayab, R. S.; Maddila, S.; Krishna, M. P.; Titinchi, S. J.; Thaslim, B. S.; Chintha, V.; Wudayagiri, R.; Nagam, V.; Tartte, V.; Chinnam, S. In silico molecular docking and in vitro antioxidant activity studies of novel α-aminophosphonates bearing 6-amino-1, 3-dimethyl uracil. Journal of Receptors and Signal Transduction, 2020, 40(2), 166-172 https://doi.org/10.1080/10799893.2020.1722166.

Kudelko, A.; Olesiejuk, M.; Luczynski, M.; Swiatkowski, M.; Sieranski, T.; Kruszynski, R. 1, 3, 4-Thiadiazole-containing azo dyes: Synthesis, spectroscopic properties and molecular structure. Molecules 2020, 25(12), 2822. https://doi.org/10.3390/molecules25122822.

Alkalidi, R. A. A.; Al-Tamimi, E. O.; Al-Shammaree, S. A. Synthesis and identification of new 2-substituted-1,3,4-Oxadiazole compounds from creatinine and Study Their Antioxidant Activities Journal of Medicinal and Chemical Sciences, 2023, 6(6), 1216-1229. https://doi.org/10.26655/JMCHEMSCI.2023.6.2.

Ali, A. T.; Mosa, M. N.; Alshaheen, Z. G.; Muhammad-Ali, M.A. Synthesis, characterization and antibacterial evaluation of Oxoazetidin - Benzene sulfonamide derivatives as a hybrid antimicrobial agents. Systematic Reviews in Pharmacy, 2020, 11 (2), 487-494. https://doi: 10.5530/srp.2020.2.74.

Kadhim, A. K.; Khalaf, M. I. New Low Bandgap compounds comprised of Pyromellitic Diimide and Imine units. Chemical Methodologies, 2022, 6(5), 418-427.

https://doi.org/10.22034/chemm.2022.335391.1463.

Al-Adhami, H.; Al-Majidi, S. M. Synthesis, characterization of Thiazolidin-4-one, Oxazolidin-4-one and Imidazolidin-4-one derivatives from 6-Amino-1, 3-dimethyluracil and evaluation of their antioxidant and antimicrobial agent. Al-Qadisiyah Journal Of Pure Science, 2021, 26(4), 59–72.

https://doi.org/10.29350/jops.2021.26. 4.1346.

Abdelmajeid, A.; Aly, A.; Zahran, E. M. Synthesis and evaluation of antibacterial and antifungal activity of new series of thiadiazoloquinazolinone derivatives. Egyptian Journal of Chemistry, 2022, 65 (5), 1-2. https://: 10.21608/EJCHEM.2021.97638.4557.

Alheety, N. Synthesis, characterization and antimicrobial activity study of some new substituted benzoxazole derivatives. Baghdad Science Journal, 2019, 16(3), 616-616.

https://doi.org/10.21123/bsj.2019.16.3.616.

Ghali, T. S.; Tomma, J. H., Synthesis and study the mesomorphic behaviour of new N-acetyl and their diazetine: Mono and twin. Ibn AL-Haitham Journal For Pure and Applied Science, 2018, 31(1), 88-98.

https://doi.org/10.30526/31.1.1856.

Olszowy, M.; Dawidowicz, A. L. Is it possible to use the DPPH and ABTS methods for reliable estimation of antioxidant power of colored compounds. Chemical Papers, 2018, 72, 393-400.

https://doi.org/10.1007/s11696-017-0288-3. DOI: https://doi.org/10.1007/s11696-017-0288-3

Alheety, K. A.; Jamel, N. M.; Tomma, J. H.; Alheety, K.A. Synthesis and biological activity of some new thiazolidinone derivatives. Sys Rev Pharm ., 2020, 11, 490-494. https://doi: 10.5530/srp.2020.3.62.

Hussein, M. S.; Al-Lami, N. Anti-cancer and antioxidant activities of some new synthesized Mannich bases containing an Imidazo (2, 1-B) Thiazole moiety. Iraqi Journal of Science, 2022, 63, 4620-4636.

https://doi: https://doi.org/10.24996/ijs.2022.63.11.1.

Salih, A.R.; Al-Messri, Z.A.K. Synthesis, characterization and evaluation of some Pyranopyrazole derivatives as multifunction additives for medium lubricating Oils. Iraqi Journal of Science, 2022, 63, 2827-2838. https://doi.org/10.24996/ijs.2022.63.7.7.

Al-tamimi, M.B.W.; Al-Majidi, S. M. Synthesis, identification of some new tetrazoline, thiazolidin-4-one and imidazolidin-4-one derivatives and evaluation anticancer of their molecular docking and anti-oxidant experimental. 3 c TIC: cuadernos de desarrollo aplicados a las TIC., 2023, 12 (1), 83-116.

https://doi.org/10.17993/3ctic.2023.121.83-116.

Nassar, H.; Abou-El-Wafa, M. H.; Elkik, H., Synthesis and characterization of some coordinated metal and charge transfer complexes of isonicotinic acid hydrazide ligand with 2-hydroxyacetophenonylidene. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 123759. https://dx.doi.org/10.2139/ssrn.4379590.

Elangovan, N.; Thomas, R.; Sowrirajan, S., Synthesis of Schiff base (E)-4-((2-hydroxy-3, 5-diiodobenzylidene) amino)-N-thiazole-2-yl) benzenesulfonamide with antimicrobial potential, structural features, experimental biological screening and quantum mechanical studies. Journal of Molecular Structure, 2022, 1250, 131762. https://doi.org/10.1016/j.molstruc.2021.131762.

Erdoğan, H.; Yılmaz, Ö.; Çevik, P. K.; Doğan, M.; Özen, R., Synthesis of Schiff Bases and Secondary Amines with Indane Skeleton; Evaluation of Their Antioxidant, Antibiotic, and Antifungal Activities. Chemistry & Biodiversity, 2023, 20(9), e202300684. https://doi.org/10.1002/cbdv.202300684.

Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z., Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. International journal of biological macromolecules, 2020, 143, 714-723. https://doi.org/10.1016/j.ijbiomac.2019.09.127.

Ali, R. A.; Al-Tamimi, E. O.; Abdul-Wadood, S., Synthesis and Identification of New Azolidine-4-one Derived from Creatinine and Study their Anticancer and Antioxidant Effects. Iraqi Journal of Science, 2023, 64(12). https://doi.org/10.24996/ijs.2023.64.12.3.

Kadhim, Z. Y.; Alqaraghuli, H. G.; Abd, M. T., Synthesis, Characterization, Molecular Docking, In Vitro Biological Evaluation and In Vitro Cytotoxicity Study of Novel Thiazolidine-4-One Derivatives as Anti-Breast Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2021, 21 (17), 2397-2406.

https://doi.org/10.2174/1871520621666210401100801. DOI: https://doi.org/10.2174/1871520621666210401100801

Martinez-Morales, F.; Alonso-Castro, A. J.; Zapata-Morales, J. R.; Carranza-Álvarez, C.; Aragon-Martinez, O. H. Use of standardized units for a correct interpretation of IC50 values obtained from the inhibition of the DPPH radical by natural antioxidants. Chemical Papers, 2020, 74, 3325-3334.

https://doi.org/10.1007/s11696-020-01161-x.

Isildak, Ö.; Yildiz, I.; Genc, N. A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. Food Chemistry, 2022, 373, 131420.

https://doi.org/10.1016/j.foodchem.2021.131420.

Abraham, R. J.; Fisher, J.; Loftus, P. Introduction to NMR spectroscopy. Wiley New York: 1998, 2.

Gunther, H.; Guenther, H.; Gunther, H., NMR spectroscopy: an introduction. Wiley Chichester: 1980.

Stothers, J. Carbon-13 NMR Spectroscopy: Organic Chemistry, A Series of Monographs. Elsevier: 2012, 24.

Müller, L.; Kumar, A.; Ernst, R., Two‐dimensional carbon‐13 NMR spectroscopy. The Journal of Chemical Physics, 1975, 63 (12), 5490-5491. http://dx.doi.org/10.1063/1.431284. DOI: https://doi.org/10.1063/1.431284