Effect of alcoholic phenol and nanocapsules extract from grape seed (Vitis vinifera) on egg hatching and adult death of southern cowpea beetles
Main Article Content
Abstract
Pulses are the second most significant economic crop that have been attacked by many storage pests. One of these pests is the cowpea beetle (Callosobruchus maculatus). This study aims to study the effect of phenol grape seed (Vitis vinifera) extract (1000,1500,2000,2500and 3500 mg/L) on eggs and adults. The results showed that the alcoholic extract of the grape seed (Vitis vinifera) recorded for the egg hatching was (80, 56.67, 53.33, 40.00 and 10.00%) respectively, Results in the use of nanocapsules at concentrations of 100 and 500 mg/L showed the egg hatching ratio was (53.33, 16.67%) respectively, while the results of alcoholic extracts of grape seed (Vitis vinifera) recorded for adult mortality was(20.00, 70.00, 73.33, 76.67and96.67%) respectively after 72 hours of treatment , Results in the use of nanocapsules at concentrations of 100 and 500 mg/L showed the adult mortality rate was (26.67, 93.33%) respectively after 72 hours of treatment , The adult mortality rate increases by increasing the concentrations.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Messina FJ.; Lish AM.; Gompert, Z. Components of cowpea resistance to the seed beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae). J. Econ. Entomol., 2019; 112, 5, 2418-24.
Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res., 2008; 44, 2, 126-35. DOI: https://doi.org/10.1016/j.jspr.2007.08.003
de Souza Alves, M; Campos, I.M.; de Brito ,D.D.; Cardoso, C.M.; Pontes, E.G.; de Souza, M.A. Efficacy of Lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop protection. 2019 ,119:191-6.
Isman, M.B. Botanical insecticides in the twenty-first century—fulfilling their promise?. Ann. Rev. Entomol., 2020; 65, 233-249.
Zhang, P.; Qin, D.; Chen, J.; Zhang, Z. Plants in the genus Tephrosia: valuable resources for botanical insecticides. Insects, 2020; 11, 10, 721.
Parihar, S.; Sharma, D. A brief overview on Vitis vinifera. Sch. Acad. J. Pharm., 2021; 231-239.
Cotea, V.V.; Luchian, C.; Niculaua, M.; Zamfir, CI.; Moraru, I.; Nechita, B.C.; Colibaba, C. Evaluation of phenolic compounds content in grape seeds. Environ. Eng. Manag. J., 2018; 17, 4.
Stadler, T.; Buteler, M.; Valdez, S.R.; Gitto, J.G. Particulate nanoinsecticides: a new concept in insect pest management. Insecticides: Agric. Toxicol., 2018; 83. DOI: https://doi.org/10.5772/intechopen.72448
Perlatti, B.;de Souza Bergo, P.L.; Fernandes, J.B.; Forim, M.R. Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Insecticides-Development of safer and more Effective Technologies 2013; IntechOpen. DOI: https://doi.org/10.5772/53355
Haddar, W.; Baaka, N.; Meksi, N.; Ticha, M.B.;Guesmi, A.; Mhenni, M.F. Use of ultrasonic energy for enhancing the dyeing performances of polyamide fibers with olive vegetable water. Fibers Polymers, 2015; 16, 1506-1511. DOI: https://doi.org/10.1007/s12221-015-4931-8
AL-Momen, H.M.; Gali, M.A.; and Alwash, B.M.,. Isolationof Jasmimin fromJasmine (Jasminum sambac). Iraqi J. Biotechnol., 2015; 14, 2, 113-121.
Yang, FL.; Li, X.G.; Zhu, F.; Lei, CL. Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J. Agric. Food Chem., 2009; 57, 21, 10156-10162. DOI: https://doi.org/10.1021/jf9023118
Adesina, J.M.; Ofuya, T.I. Oviposition deterrent and egg hatchability suppression of Secamone afzelii (Schult) K. Schum leaf extract on Callosobruchus maculatus (Fabricius) (Coleoptera: Chrysomelidae). Jordan J. Biol. Sci., 2015; 8, 2, 95-100. DOI: https://doi.org/10.12816/0027554
Amiri, A.; Bandani, A.R. Callosobruchus embryo struggle to guarantee progeny production. Sci. Rep., 2020; 10, 1, 13269.
Mall, R.A.; Kathier, S.A. Effect of nanocapsules and traditional alcoholic plant extracts of grape seeds Vitis vinifer on Callosobruchus maculatus. Ann. For. Res. 2022; 65, 1, 4990-4998.
Rashid, Y.D.; Dawood, H.H. The effect of organic solvent extracts for leaves and flowers of the sweet basil plant Basilicum ocimum in some aspects of the life performance of the southern lobia beetle insect Callosobruchus maculatus. NVEO-Nat. Volatiles Essential Oils J., 2022; 1041-1048.
Ileke, K.D.; and Olotuah, O.F. Bioactivity of Anacardium occidentale (L) and Allium sativum (L) powders and oils extracts against cowpea bruchid, Callosobruchus maculatus (Fab.)[Coleoptera: Chrysomelidae]. Int. J. Biol., 2012; 4, 1, 96. DOI: https://doi.org/10.5539/ijb.v4n1p96
Shunmugadevi C.; Anbu, R.S. Bioactivity of plant extracts against cowpea bruchid Callosobruchus maculatus (Fab): a review. Agric. Rev., 2020; 41, 3, 185-200.
Kalpna, A.; Hajam, Y.A.; Kumar, R. Management of stored grain pest with special reference to Callosobruchus maculatus, a major pest of cowpea: A review. Heliyon, 2022; 8, 1, e08703. DOI: https://doi.org/10.1016/j.heliyon.2021.e08703
Keteku, A.K.; Badii, B.K.; Sowley, E.N.K. Evaluation of Hyptis spicigera leaf extracts against cowpea weevil (Callosobruchus maculatus) in stored Bambara groundnut (Vigna subterranea L.). J. Saudi Soc. Agric. Sci., 2020; 19, 5, 353-357.
Hudaib, T.; Hayes, W.; Brown, S.; Eady, P.E. Effect of seed moisture content and d-limonene on oviposition decisions of the seed beetle Callosobruchus maculatus. Entomol. Exp. Appl., 2010; 137, 120–125. DOI: https://doi.org/10.1111/j.1570-7458.2010.01044.x
Hudaib, T.; Brown, S.; Goodman, A.M.; Eady, P.E. Efficacy of artificial seeds in the delivery of bioactive compounds to the seed dwelling larvae of Callosobruchus maculatus (Coleoptera: Bruchidae). Arthropod-Plant Interac., 2013; 7, 527–533. DOI: https://doi.org/10.1007/s11829-013-9266-z
Kedia, A..; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)-a review. J. Food Sci. Technol., 2015; 52, 3, 1239-1257. DOI: https://doi.org/10.1007/s13197-013-1167-8
Islam, R.; Khan, R.I.; Al-Reza, S.M.; Jeong, Y.T.; Song, C.H.; Khalequzzaman, M. Chemical composition and insecticidal properties of Cinnamomum aromaticum (Nees) essential oil against the stored-product beetle Callosobruchus maculatus (F.). J. Sci. Food Agri., 2009; 89, 1241-1246 DOI: https://doi.org/10.1002/jsfa.3582
25.Krishnappa, K.; Laksmanan, S.; Elumalai, K.; Jayakumar S. Insecticidal action of certain essential oils against Callosobruchus maculatus (Coleoptera: Bruchidae). Int. J. Cur. Agri. Sci., 2011; 1, 10-14.
26.Douiri LF., Boughdad A., Assobhei O., Moumni M. Chemical composition and biological activity of Allium sativum essential oils against Callosobruchus maculatus. J. Env. Sci. Toxicol. Food Tech., 2013; 3, 1, 30-36. DOI: https://doi.org/10.9790/2402-0313036
Prates, H.T.; Santos, J.P.; Waquil, J.M.;Fabris, J.D.;Oliveira, A.B. and Foster, J.E. Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). J. Stored Products Res., 1998; 34, 4, 243-249. DOI: https://doi.org/10.1016/S0022-474X(98)00005-8
28.Jassim,T.N.; Kathiar, S.A.; Al Shammari, H.I. Impact of alkaloids extract of Moringa olievera Lam. leaves on the development, fertility and demography of the southern cowpea beetle insect Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Baghdad Sci. J., 2023; 7.
Ngamo, T.S.; Ngassoum, M.B.; Mapongmestsem, P.M.; Malaisse, F.; Haubruge, E.; Lognay, G.; and Hance, T. Current post harvest practices to avoid insect attacks on stored grains in northern Cameroon. Agric. J., 2007; 2, 2.
Akbar, R.; Khan, I.A.; Alajmi, R.A.; Ali, A.; Faheem, B.; Usman, A.; Ahmed, A.M.; El-Shazly, M.; Farid, A.; Giesy, J.P. Evaluation of insecticidal potentials of five plant extracts against the stored grain pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Insects, 2022.; 13, 1047.