Assessment of Monocyte Chemoattractant Protein -1 and Fertility Hormones in Iraqi Women with Polycystic Ovarian Syndrome

Authors

  • Sara Khaleel Ibrahim Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.
  • Sura Fouad Alsaffar Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.30526/37.1.3307

Keywords:

PCOS, MCP-1, Testosterone, Prolactin, LH, FSH.

Abstract

Polycystic ovarian syndrome (PCOS) is a well-known endocrinopathy and one of the most frequent endocrine-reproductive-metabolic syndromes in women, which can result in reduced fertility. While the actual cause is unknown, PCOS is regarded as a complicated genetic characteristic with a great degree of variability. Moreover, hormones and immune cells, including both innate and acquired immune cells, are thought to interact in PCOS. Chronic low-grade inflammation raises the risk of autoimmune disease. The study's purpose is to investigate the chemokine monocyte chemoattractant protein-1 (MCP-1) and fertility hormones in samples of women patients with polycystic ovary syndrome (PCOS) in the City of Medicine. Sixty PCOS women comprise 30 healthy control women; their average age was 20–40 years, and their weight ranged from 60 to 100 kg. The results showed an increase in the level of MCP1 in PCOS patients, but this increase was not significant (P<0.05), which was not influenced by BMI or fertility hormones. As well as elevated fertility hormones, this study, when compared to controls as well as patients with PCOS, showed a significant increase in the level of testosterone (14.63 ±2.30 nmol/L) while in control women (0.627 ±0.04), LH hormone in patients and control group (6.54 ±0.51 mIU/mL), and 2.93 ±0.18, respectively. Prolactin hormone was increased in PCOS patients (16.27 ±1.25 ng/mL) when compared to the control group \ (12.85 ±0.62). There was no significant difference in FSH hormone in women with PCOS (5.27 ±0.28 mIU/mL) compared with the control group (5.59 ±0.18).

References

Wu, Z.; Fang, L.; Li, Y.; Yan, Y.; Thakur, A.; Cheng, J.C.; Sun, Y.P. Association of circulating monocyte chemoattractant protein‐1 levels with polycystic ovary syndrome: A meta‐analysis. Am. J. Reproduc. Immunol., 2021; 86, e13407.

McCartney, C.R.; Marshall, J.C. Polycystic ovary syndrome. New England J. Med., 2016; 375, 54-64. DOI: https://doi.org/10.1056/NEJMcp1514916

Lentscher, J.A.; Slocum, B.; Torrealday, S. Polycystic ovarian syndrome and fertility. Clin. Obstet. Gynecol., 2021; 64, 65-75.

Ibrahim, M.I.I.; Al-Saffar, J.M. Serum level evaluation of interleukin-18 in obese women with polycystic ovary syndrome. Iraqi J. Sci. 2018; 1989-1994.

Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The regulation and importance of monocyte chemoattractant protein-1. Curr. Opinion Hematol., 2018; 25, 44-51. DOI: https://doi.org/10.1097/MOH.0000000000000389

Dahm-Kähler, P.; Ghahremani, M.; Lind, A.-K.; Sundfeldt, K.; Brännström, M. Monocyte chemotactic protein-1 (MCP-1), its receptor, and macrophages in the perifollicular stroma during the human ovulatory process. Fertil. Steril., 2009; 91, 231-239. DOI: https://doi.org/10.1016/j.fertnstert.2007.07.1330

Yadav, A.; Saini, V.; Arora, S. MCP-1: chemoattractant with a role beyond immunity: a review. Clin. Chimica Acta, 2010; 411, 1570-1579. DOI: https://doi.org/10.1016/j.cca.2010.07.006

Farman, H.A.; Hussien, H.K. Evaluation of monocyte chemotactic protein-1 level in serum of fertile and infertile women. Int. J. Health Sci., 2022; 6, S2, 10498–10504.

Buyuk, E.; Asemota, O.A.; Merhi, Z.; Charron, M.J.; Berger, D.S.; Zapantis, A.; Jindal, S.K. Serum and follicular fluid monocyte chemotactic protein-1 levels are elevated in obese women and are associated with poorer clinical pregnancy rate after in vitro fertilization: a pilot study. Fertil. Steril. 2017; 107, 632-640. DOI: https://doi.org/10.1016/j.fertnstert.2016.12.023

Fakhrildin, M.-B.M.; Al-Mafraji, H.M.J. Impact of age and weight on levels of some reproductive hormones for Iraqi infertile women. World J. Pharmac. Res., 2015; 5, 1, 517-522.

Davis, S.R.; Wahlin-Jacobsen, S. Testosterone in women—the clinical significance. Lancet Diab. Endocrinol. 2015; 3, 980-992. DOI: https://doi.org/10.1016/S2213-8587(15)00284-3

Randolph Jr, J.F.; Zheng, H.; Avis, N.E.; Greendale, G.A.; Harlow, S.D. Masturbation frequency and sexual function domains are associated with serum reproductive hormone levels across the menopausal transition. J. Clin. Endocrinol. Metabol. 2015; 100, 258-266. DOI: https://doi.org/10.1210/jc.2014-1725

Laven, J.S. Follicle stimulating hormone receptor (FSHR) polymorphisms and polycystic ovary syndrome (PCOS). Front. Endocrinol., 2019; 10, 23.

Le, M.T.; Le, V.N.S.; Le, D.D.; Nguyen, V.Q.H.; Chen, C.; Cao, N.T. Exploration of the role of anti‐Mullerian hormone and LH/FSH ratio in diagnosis of polycystic ovary syndrome. Clin. Endocrinol., 2019; 90, 579-585.

Johansson, J.; Stener-Victorin, E. Polycystic ovary syndrome: effect and mechanisms of acupuncture for ovulation induction. Evid.-Based Complem. Altern. Med., 2013; 2013. DOI: https://doi.org/10.1155/2013/762615

Alsaadi, Y.L.; Mohamad, B.J. Prevalence of hyperandrogenism in Iraqi women with polycystic ovary syndrome. Iraqi J. Sci., 2019; 2600-2608.

Bernard, V.; Young, J.; Chanson, P.; Binart, N. New insights in prolactin: pathological implications. Nat. Rev. Endocrinol., 2015; 11, 265-275. DOI: https://doi.org/10.1038/nrendo.2015.36

Franik, G.; Madej, P.; Guz-Lem, M.; Owczarek, A.; Chudek, J.; Olszanecka-Glinianowicz, M. Daytime decrease of prolactin levels is associated with PCOS regardless to nutritional status and other hormones levels. Gynecol. Endocrinol., 2017; 33, 336-341. DOI: https://doi.org/10.1080/09513590.2016.1276555

Paulson, M.; Norstedt, G.; Sahlin, L.; Hirschberg, A.L. Association between prolactin receptor expression and proliferation in the endometrium of obese women with polycystic ovary syndrome. Gynecol. Endocrinol., 2020; 36, 226-232.

Szosland, K.; Pawłowicz, P.; Lewiński, A. Prolactin secretion in polycystic ovary syndrome (PCOS). Neuroendocrinol. Lett., 2015; 36, 53-58.

Stamatiades, G.A.; Kaiser, U.B. Gonadotropin regulation by pulsatile GnRH: signaling and gene expression. Molec. Cell. Endocrinol., 2018; 463, 131-141. DOI: https://doi.org/10.1016/j.mce.2017.10.015

Orlowski, M.; Sarao, M.S. Physiology, follicle stimulating hormone. Follicle Stimul. Horm., 2018; 6.

Saadia, Z. Follicle stimulating hormone (LH: FSH) ratio in polycystic ovary syndrome (PCOS)-obese vs. Non-obese women. Med. Arch., 2020; 74, 289.

Shaw, N.; Histed, S.; Srouji, S.; Yang, J.; Lee, H.; Hall, J. Estrogen negative feedback on gonadotropin secretion: evidence for a direct pituitary effect in women. J. Clin. Endocrinol. Metabol., 2010; 95, 1955-1961. DOI: https://doi.org/10.1210/jc.2009-2108

Azziz, R. Polycystic ovary syndrome. Obstet. Gynecol. 2018; 132, 321-336.

Li, L.; Ryoo, J.E.; Lee, K.-J.; Choi, B.-C.; Baek, K.-H. Genetic variation in the Mcp-1 gene promoter associated with the risk of polycystic ovary syndrome. PLoS One, 2015; 10, e0123045. DOI: https://doi.org/10.1371/journal.pone.0123045

Daan, N.M.; Koster, M.P.; de Wilde, M.A.; Dalmeijer, G.W.; Evelein, A.M.; Fauser, B.C.; de Jager, W. Biomarker profiles in women with PCOS and PCOS offspring; a pilot study. PloS One 2016; 11, e0165033. DOI: https://doi.org/10.1371/journal.pone.0165033

Wyskida, K.; Franik, G.; Choręza, P.; Pohl, N.; Markuszewski, L.; Owczarek, A.; Madej, P.; Chudek, J.; Olszanecka-Glinianowicz, M. Pentraxin 3 levels in young women with and without polycystic ovary syndrome (PCOS) in relation to the nutritional status and systemic inflammation. Int. J. Endocrinol., 2020; 2020.

Aksak, T.; Gümürdülü, D.; Çetin, M.T.; Polat, S. Expression of monocyte chemotactic protein 2 and tumor necrosis factor alpha in human normal endometrium and endometriotic tissues. J. Gynecol. Obstet. Human Reprod. 2021; 50, 101971.

Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol., 2021; 101, 107598.

Ambiger, S.; Patil, S.B.; Rekha, M.; Dhananjaya, S. Role of leutenising hormone LH and insulin resistance in polycystic ovarian syndrome. Int. J. Reprod. Contracept., Obst. Gynecol., 2017; 6, 3892-3897. DOI: https://doi.org/10.18203/2320-1770.ijrcog20174029

Yang, H.; Di, J.; Pan, J.; Yu, R.; Teng, Y.; Cai, Z.; Deng, X. The association between prolactin and metabolic parameters in PCOS women: a retrospective analysis. Front. Endocrinol., 2020; 11, 263.

Saei Ghare Naz, M.; Mousavi, M.; Mahboobifard, F.; Niknam, A.; Ramezani Tehrani, F. A Meta-Analysis of Observational Studies on Prolactin Levels in Women with Polycystic Ovary Syndrome. Diagnostics, 2022; 12, 2924.

Underdal, M.O.; Salvesen, Q.; Schmedes, A.; Andersen, M.S.; Vanky, E. Prolactin and breast increase during pregnancy in PCOS: linked to long-term metabolic health? Europ. J. Endocrinol., 2019; 180, 373-380.

Barartabar, Z.; Danesh, H.; Mazloomi, S.; Alizadeh, N.; Pilehvari, S. Association of High Levels of Testosterone and Ferritin with Overweight in Women with PCOS. J. Adv. Biomed. Sci., 2021; 11, 3886-3894.

Rosenfield, R.L.; Ehrmann, D.A. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016; 37, 467-520. DOI: https://doi.org/10.1210/er.2015-1104

Downloads

Published

20-Jan-2024

Issue

Section

Biology

Publication Dates