The Effect of Partial Substitution of Ge-S-Cd Alloys on the Density of Energy States

Main Article Content

Zainab Abd Al-hadi
Kareem Ali Jasim

Abstract

Five samples of the ternary alloy Ge-S-Cd were created using the melting point method, and the effects of partially substituting cadmium for germanium were determined. and partial substitution of germanium by cadmium was used to study the change in electrical conductivity. Electrical experiments were performed on Ge35-xS65Cdxternary alloy with x = 0, 5, 10, 15, and 20. It was discovered that the conductivity (σdc) rises with rising temperature in all samples under experiment. This confirms that the samples have semiconductor behavior. It has been observed that there are three regions of electrical conductivity in the electrical conductivity curve at low, moderate, and high temperatures. The preexponential elements and effective energies of each of the three conduction regions were calculated for each of the Cadmium values. It was found that all of them were impacted by a rise in the value of cadmium in the ingot. A numerical analysis of the conductivity equation was also performed to calculate the energy of the expanding states' density in local states and at the Fermi level. It has been observed that all of the values of samples change with the rising value of cadmium concentration.

Article Details

How to Cite
The Effect of Partial Substitution of Ge-S-Cd Alloys on the Density of Energy States. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 140-147. https://doi.org/10.30526/37.1.3314
Section
Physics

How to Cite

The Effect of Partial Substitution of Ge-S-Cd Alloys on the Density of Energy States. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 140-147. https://doi.org/10.30526/37.1.3314

Publication Dates

References

Wang, Y.; Dai, S.; Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review. PhotoniX. 2021, 2, 9, 34- 45.

Noé, P.; Vallée, C., Hippert, F., Fillot, F. & Raty, J.-Y. Phase-change materials for nonvolatile memory devices: From technological challenges to materials science issues. Semicond. Sci. Technol. 2018, 33, 1.

Dhanasekaran, V.; Chalcogenides - Preparation and Applications. 2022, 23, 45-55

Verdy, G. N.; Sousa, V. ; Noé, P.; M. Bernard; F. Fillot; G. Bourgeois; J. Garrione;L. PerniolaImproved electrical performance thanks to Sb and N doping in Se-rich GeSe-based OTS selector devices. IEEE 9th Int. Mem. Work. , IMW .2017,23, 45-67

Popescu, M. A.; Non Crystalline Chalcogenides.Springer, Berlin, 2000,23,12- 23

Eggleton, B. J. ; Luther, D.; Barry, R.; Kathleen. Chalcogenide photonics. Nature Phot. 2011, 5, 141.

Tsiulyanu, D.; Ciobanu, M.; Room temperature A.C. operating gas sensors based on quaternary chalcogenides. Sensor. Actuat. B-Chem. 2016,223, 95–100

Lyubin, V.; Klebanov, M.; Feigel, A.; Sfez, B.; Films of chalcogenide glassy semiconductors: New phenomena and new applications. Thin Solid Films. 2004,459, 183–186

Tanaka, K.; Optical nonlinerity in photonic glasses. J. Mater. Sci. Mater. Electron. 2005, 16, 633–64

Mouawad, O.; Picot-Clémente, J.; Amrani, C.; Strutynski, J.; Fatome, B.; Kibler, F.; Désévédavy, G. Gadret, J.-C. Jules, D. Deng, Y. Ohishi, Smektala F.; Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt. Lett. 2014, 39, 2684.

Christian R. P.; Uffe, M.; Irnis, K.; Binbin, Z.; Sune, D.; Jacob, R.; Trevor, B.; Slawomir, S.; Nabil, A.; Zhuoqi ,T.; David, F.; Angela, S.; Ole, Bang id-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Phot. 2014, 8, 830–834

Nawal, H. k.; Kareem, A. J.; A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass. Ibn Al-Haitham Journal for Pure and Applied Sciences, IHJPAS. 2023, 36, 1, 23-33

B. A.; Ahmeda, J. S. Mohammed , R. N.; Fadhila , K. A. Jasima , A. H. Shaban c , A. H. Al Dulaimi, " The dependence of the energy density states on the substitution of chemical elements in the Se6Te4-xSbx thin film, Chalcogenide Letters , 2022, 19, 4, 301 – 308,

R. K. Nkum , F. K. Ampong and F. Boakye Conduction Mechanism in Amorphous as 2S3",Journal of Science and Technology, 2012, 32, 3, 11-17

Kareem, A. J.; The Effect of Cadmium Substitution on The Superconducting Properties of Tl1-xCdxBa2Ca2Cu3O9-+ δ Compound), Journal of superconductivity and novel magnetism, 2013,26, 549-552, 9.

Aqeel, N. A.; Ahlam, A.; Riyadh, K. C.; Kareem, A. J.; Auday, H. S.; Calculating the Mechanisms of Electrical Conductivity and Energy Density of States for Se85Te10Sn5-xInx Glasses Materials, Journal of Green Engineering (JGE), 2020, 10, 9, 5487–5503.

Riyadh, K. C.; Sarab, S. J.; Kassim, M. W.; Kareem, A. J.; Auday, H. S.; Fabrication of Ge30Te70-xSbx Glasses Alloys and Studying the Effect of Partial Substitution on D.C Electrical Energy Parameters, Key Engineering Materials, 2021, ISSN: 1662-9795, 9, 163-171.

Tariq, J. A.; Kareem, A. J.; The Influence of Annealing Temperature on Density of States, Electrical and Optical Properties of Ge0.2Te0.8Thin Film, Materials Science and Technology (MS&T), 2010, Houston, USA, Texas . October 17-21.

Riyadh, K. C.; Sarab, S. J.; Kassim, M. W.; Kareem, A. J.; Auday, H. S.; Fabration of Ge30Te70-xSbx Glasses Alloy and Studying the Partial Substitution on D.C Electrical Energy Parameters, Key Engineering Materials, 2021, 9,9, 3, 163-171,

Stamate, M.; Ph D Thesis, Al.I.Cuza” University, Iasi, Romania, 1999.

Ahmed, B. A.; Mohammed, J. S.; R. N.; Fadhil, K. A.; Jasima, A. H.; Shaban, A. H.; Al Dulaimi, The dependence of the energy density states on the substitution of chemical elements in the Se6Te4-xSbx thin film, Chalcogenide Letters, 2022, 19, 4, 301 – 308.

A. A. ; Yadav, M.A.; Barote, T.V.; Chavan, E.U.; Masumdar, J.; Influence of indium doping on the properties of spray deposited CdS0.2Se0.8 thin films, Alloys and Compounds. 2011, 509 , 916.

Kastner, M.; Bonding, B.; Lone-Pair, B.; Impurity States in Chalcogenide Semiconductors. Phys. Rev. Lett. 1972, 28 (6), 355–357.https://doi.org/10. 1103/PhysRevLett.28.355.

Nawal, H. K.; , Kareem, A. J.; A Study of the Effectiveness of Tin on the Thermal Conductivity Coefficient and Electrical Resistance of Se60Te40-xSnx Chalcogenide Glass, Ibn Al-Haitham Journal for Pure and Applied Sciences, IHJPAS. 2023, 36, 1.

Baker, E. H.; Webb, L. M.; Preparation and Electrical Conductivity of Some Chalcogenide Glasses at High Temperatures, J. Materials Science, 1974, 9, 1128-1132

Murshed, H.; Fundamentals of Radiation Oncology: Physical, Biological, and Clinical Aspects. 3rd ed. Academic Press. 2019, 23, 15-21

Madlool, S. A.; Abdullah, S. S.; Alabedi, H. H.; Alazawy, N.; Al-Musawi, M. J.; Saad, D.; Optimum Treatment Planning Technique Evaluation for Synchronous Bilateral Breast Cancer with Left Side Supraclavicular Lymph Nodes. Iranian Journal of Medical Physics. 2020, 9, 45-56.

Khan, F. M.; Gibbons, J. P.; Khan's the Physics of Radiation Therapy. 6th ed., Lippincott Williams & Wilkins; 2019, 45,1–5

Faraj, M. K.; Naji N.A.; Alazawy, N. M.; The Efficiency of the Prescribed Dose of the Gamma Knife for the Treatment of Trigeminal Neuralgia. Interdiscip Neurosurg. 2018, 14, 9–13.

Pazdur, R.; Wagman, L. D.; Camphausen, K. A.; Hoskins, W. J.; Cancer Management-A Multidisciplinary Approach. 1st ed. New York: The Oncology Group; 2003, 23, 10-18.