Polyacrylonitrile Nanofiber Composites as Efficient Removal of Pollutants for Wastewater: A Review Article

Main Article Content

Zainab Abbas Al-Dulaimy
Husam Saleem Khalaf
Shaimaa Abdul Hussein Jadoo
Wedad J. Fendi
Enass J.Waheed

Abstract

Polyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can be employed to make CNFS. Water gets polluted because it throws industrial waste bodies of water, especially those containing dyes, heavy metals, and inorganic and organic wastes. Adsorbents, which are cheap and readily available, can be used to address the issue of water deterioration. According to this review, numerous PAN variations are being employed in scientific and technological settings. Nanocomposite fibers need extensive research efforts to advance technology and bring them to commercialization.

Article Details

How to Cite
[1]
Al-Dulaimy, Z.A. et al. 2024. Polyacrylonitrile Nanofiber Composites as Efficient Removal of Pollutants for Wastewater: A Review Article. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 279–286. DOI:https://doi.org/10.30526/37.3.3320.
Section
Chemistry

How to Cite

[1]
Al-Dulaimy, Z.A. et al. 2024. Polyacrylonitrile Nanofiber Composites as Efficient Removal of Pollutants for Wastewater: A Review Article. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 279–286. DOI:https://doi.org/10.30526/37.3.3320.

Publication Dates

Received

2023-03-09

Accepted

2023-05-14

Published Online First

2024-07-20

References

Weiner, S.; Addadi, L. Biomineralization. At the Cutting Edge. Science 2002, 298(5592), 375–376. https://doi.org/10.1126/science.1078093.

Omta, A.W.; Kropman, M.F.; Woutersen, S.; Bakker, H.J. Negligible Effect of Ions on the Hydrogen-Bond Structure in Liquid Water. Science 2003, 301(5631), 347–349. https://doi.org/10.1126/science.1084801.

Shakiba M.; Nabavi S.R.; Emadi H.; Faraji M. Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite. Polym Adv Technol 2021, 32(3), 1301-1316. https://doi.org/10.1002/pat.5178.

Lasenko I.; Grauda D.; Butkauskas D.; Sanchaniya J.V.; Viluma-Gudmona A.; Lusis V. Testing the Physical and Mechanical Properties of Polyacrylonitrile Nanofibers Reinforced with Succinite and Silicon Dioxide Nanoparticles. Textiles 2022, 2(1), 162-173. https://doi.org/10.3390/textiles2010009.

Slebi-Acevedo C.J.; Lastra-González P.; Castro-Fresno D.; Vega-Zamanillo A. Experimental Evaluation and Recyclability Potential of Asphalt Concrete Mixtures with Polyacrylonitrile Fibers. Constr Build Mater 2022, 317, 1-4. https://doi.org/10.1016/j.conbuildmat.2021.125829.

Jia L.; Wang X.; Tao W.; Zhang H.; Qin X. Preparation and Antibacterial Property of Polyacrylonitrile Antibacterial Composite Nanofiber Membranes. Fangzhi Xuebao/Journal Text Res 2020, 41(6), 14-20. https://doi.org/10.13475/j.fzxb.20191002807.

Pérez-Álvarez L.; Ruiz-Rubio L.; Moreno I.; Vilas-Vilela J.L. Characterization and Optimization of The Alkaline Hydrolysis of Polyacrylonitrile Membranes. Polymers (Basel) 2019, 11(11), 2-5. https://doi.org/10.3390/polym11111843.

Li J.; Luo Y.; Wang C. Confined Pyrolysis-Driven One-Dimensional Carbon Structure Evolution from Polyacrylonitrile Fiber and Its Microwave Absorption Performance. Carbon N Y 2024, 218(31), 118751. https://doi.org/10.1016/j.carbon.2023.118751.

Gómez-Díaz D.; Domínguez-Ramos L.; Malucelli G.; Freire MS.; González-Álvarez J.; Lazzari M. S/N/O-Enriched Carbons from Polyacrylonitrile-Based Block Copolymers for Selective Separation of Gas Streams. Polymers (Basel) 2024, 16(2), 269. https://doi.org/10.3390/polym16020269.

Chanthee S.; Asavatesanupap C.; Sertphon D.; Nakkhong T.; Subjalearndee N.; Santikunaporn M. Electrospinning with Natural Rubber and Ni Doping for Carbon Dioxide Adsorption and Supercapacitor Applications. Engineered Science. 2023, 27, 975. https://doi.org/10.30919/es975.

Töngüç Yalçınkaya T.; Çay A, Akduman Ç.; Akçakoca Kumbasar E.P.; Yanık J. Polyacrylonitrile and Polyacrylonitrile/Cellulose-Based Activated Carbon Nanofibers Obtained from Acrylic Textile Wastes for Carbon Dioxide Capture. Journal of Applied Polymer Science 2024, 141(23), e55475. https://doi.org/10.1002/app.55475.

Narushima, T. Recent Advances of Titanium Research in Japan. The Proceedings of Mechanical Engineering Congress, Japan. 2019, F03103. https://doi.org/10.1299/jsmemecj.2019.f03103.

Zhou Y.; Liu Y.; Zhang M.; Feng Z.; Yu D.G. Wang K. Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, 12(7), 4-7. https://doi.org/10.3390/nano12071077.

Sabantina L.; Böttjer R.; Wehlage D. Morphological Study of Stabilization and Carbonization of Polyacrylonitrile/TiO2 Nanofiber Mats. Journal of Engineered Fibers and Fabrics. 2019, 14, 1-8. https://doi.org/10.1177/1558925019862242.

Kalwar K.; Xi J.; Dandan L.; Gao L. Fabrication of PAN/FeNPs Electrospun Nanofibers: Nanozyme and an Efficient Antimicrobial Agent. Materials Today Communications 2021, 26, 4-7. https://doi.org/10.1016/j.mtcomm.2021.102168.

Sepahdar A.; Almasian A.; Akbari Javar H. Functionalized Carbon/Alumina/Silica Nanofibrous Membrane: Preparation, Characterization and Heavy Metal Filtration Performance. Desalination and Water Treatment. 2021, 233, 81-97. https://doi.org/10.5004/dwt.2021.27520.

Huang C.; Xu X.; Fu J.; Yu D.G.; Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel). 2022, 14(16), 1-33. https://doi.org/10.3390/polym14163266.

Zhao Y.; Yang Q.; Yan B. Aminated Polyacrylonitrile Nanofiber Membranes for the Removal of Organic Dyes. ACS Applied Nano Materials. 2022, 5(1), 1131-1140. doi: https://doi.org/10.1021/acsanm.1c03759.

Jang W.; Yun J.; Park Y.; Park IK.; Byun H.; Lee CH. Polyacrylonitrile nanofiber membrane modified with ag/go composite for water purification system. Polymers (Basel) 2020, 12(11), 1-12. https://doi.org/10.3390/polym12112441.

Thamer B.M.; Aldalbahi A.; Moydeen A. M.; Al-Enizi A.M.; El-Hamshary H.; El-Newehy M.H.; Synthesis of Aminated Electrospun Carbon Nanofibers and Their Application in Removal of Cationic Dye. Materials Research Bulletin. 2020, 132(6), 111003. https://doi.org/10.1016/j.materresbull.2020.111003.

Chen C.; Li F.; Guo Z.; Qu X.; Wang J.; Zhang J. Preparation and Performance of Aminated Polyacrylonitrile Nanofibers for Highly Efficient Copper Ion Removal. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019, 568(1-2), 334-344. https://doi.org/10.1016/j.colsurfa.2019.02.020.

Bao B.; Fan J.; Xu R.; Wang W.; Yu D. Rewritable Spiropyran/Polyacrylonitrile Hybrid Nanofiber Membrane Prepared by Electrospinning. Nano. 2020, 15(1), 4-7. https://doi.org/10.1142/S1793292020500137.

Haddad M.Y.; Alharbi H.F.; Karim M.R.; Aijaz M.O.; Alharthi N.H. Preparation of TiO2 Incorporated Polyacrylonitrile Electrospun Nanofibers for Adsorption of Heavy Metal Ions. Journal of Polymer Research. 2018, 25(10), 218. https://doi.org10.1007/s10965-018-1613-4.

Almasian A.; Olya M.E.; Mahmoodi N.M.; Zarinabadi E. Grafting of Polyamidoamine Dendrimer on Polyacrylonitrile Nanofiber Surface: Synthesis and Optimization of Anionic Dye Removal Process by Response Surface Methodology Method. Desalination and Water Treatment. 2019, 147, 343-361. https://doi.org/10.5004/dwt.2019.23676.

Zhu Z.; Ma X.; Xia L.; Lü W.; Chen W. Photocatalytic Performance of Iron Hexadecachlorophthalocyanine/ Polyacrylonitrile Composite Nanofibers Synergistically Enhanced by Chloride Ion. Fangzhi Xuebao/Journal Text Res 2021, 42(5), 9-15. https://doi.org/10.13475/j.fzxb.20200802807.

Du X.; Cui S.; Wang Q.; Han Q.; Liu G. Non-competitive and Competitive Adsorption Of Zn(II), Cu(II), and Cd(II) by A Granular Fe-Mn Binary Oxide in Aqueous Solution. Environmental Progress & Sustainable Energy. 2021, 40(4), 1-5. https://doi.org/10.1002/ep.13611.

Ding D.; Li Z.; Yu S. Piezo-Photocatalytic Flexible PAN/TiO2 Composite Nanofibers for Environmental Remediation. Science of The Total Environment. 2022, 824, 2-5. https://doi.org/10.1016/j.scitotenv.2022.153790.

Xiao Y.; Cao Y.; Xin B. Fabrication and Characterization of Electrospun Cellulose/Polyacrylonitrile Nanofibers with Cu(II) Ions. Cellulose. 2018, 25(5), 2955-2963. https://doi.org/10.1007/s10570-018-1784-5.

Haddad M.Y.; Alharbi H.F. Enhancement of Heavy Metal Ion Adsorption using Electrospun Polyacrylonitrile Nanofibers Loaded with Zno Nanoparticles. Journal of Applied Polymer Science 2019, 136(11), 3-6. https://doi.org/10.1002/app.47209.

Liu Q.; Zheng Y.; Zhong L.; Cheng X. Removal of Tetracycline From Aqueous Solution by A Fe3O4 Incorporated PAN Electrospun Nanofiber Mat. Journal of Environmental Sciences. 2015, 28, 29-36. https://doi.org/10.1016/j.jes.2014.04.016.

Siriwardane I.W.; Sandaruwan C.; De Silva R.M. Nanomagnetite- And Nanotitania-Incorporated Polyacrylonitrile Nanofibers for Simultaneous Cd(II)- and As(V)-Ion Removal Applications. ACS Omega 2021, 6(42), 28171-28181. https://doi.org/10.1021/acsomega.1c04238.

Liu Q.; Zhong L. B.; Zhao Q.B.; Frear C.; Zheng Y.M. Synthesis of Fe3O4/Polyacrylonitrile Composite Electrospun Nanofiber Mat for Effective Adsorption of Tetracycline. ACS Applied Materials & Interfaces. 2015, 7(27), 14573-14583. https://doi.org/10.1021/acsami.5b04598.