The Dynamic Role of PD-1, Vitamin D, RANKL, and Sclerostin in Iraqi Patients with Systemic Lupus Erythematosus

Main Article Content

Anwar Khalil Ismael
Hazima Mossa Alabassi

Abstract

Systemic lupus erythematosus (SLE) is a chronic, autoimmune disease, with a wide range of clinical symptoms. Some studies have indicated the association between RANKL, Sclerostin, PD-1, and vitamin D concentrations and the pathogenesis of SLE. The current study aimed to evaluate the role of RANKL, Sclerostin, PD-1 and vitamin D in the pathogenesis of SLE. The study included 180 females diagnosed SLE patients and healthy control (60 females as early diagnosed patients without treatment, 60 females as patients under treatment with (prednisolone, and hydroxychloroquine), and 60 females healthy as a control group, with ages ranging from 20 to 45 years. The serum concentration levels of RANKL, Sclerostin, PD-1 and vitamin D were assessed by Enzyme linked immunosorbent assay (ELISA). The results of the current study showed no significant differences in the serum levels of RANKL and Sclerostin in both SLE patients’ groups (early diagnosed group and treated) compared with the control group (p<0.05). The serum level of PD-1 was significantly higher in both SLE patients’ groups compared with the control group (p<0.05). The serum level of vitamin D was significantly lower in both SLE patient groups compared with the control group (p<0.05). Based on these results, PD-1 may be considered a good therapeutic target for SLE and the level of vitamin D must be sufficient level especially in SLE patients.

Article Details

How to Cite
The Dynamic Role of PD-1, Vitamin D, RANKL, and Sclerostin in Iraqi Patients with Systemic Lupus Erythematosus. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 9-18. https://doi.org/10.30526/37.1.3367
Section
Biology

How to Cite

The Dynamic Role of PD-1, Vitamin D, RANKL, and Sclerostin in Iraqi Patients with Systemic Lupus Erythematosus. (2024). Ibn AL-Haitham Journal For Pure and Applied Sciences, 37(1), 9-18. https://doi.org/10.30526/37.1.3367

Publication Dates

References

Kamil, M.A.; Kadr, Z.H.M.; Alabassi, H.M. Role of CXCL9-CXCR3 AXIS, ANA & DS-DNA ABS in Pathogenicity of SLE in Iraqi Patients. Pak. J. Med. Health Sci., 2022; 16, 04, 398-398.

Abbas, A.H.; Melconian, A.K.; Ad’hiah, A.H. Detection of anti-cytomegalovirus antibodies in sera of Iraqi systemic lupus erythematosus women patients. Iraqi J. Sci., 2016; 317-320.

Ibrahim, N.K.; Ghudhaib, K.K.; Allawi, A.A.D.; Hammoudi, F.A. Evaluation of HE4 and IGFBPs as Novel Biomarkers of Systemic Lupus Erythematosus with Lupus Nephritis. Indian J. Forensic Med. Toxicol., 2020; 14, 4124-4130.

Gorial, F.I.; Mahmood, Z.A.; Al Obaidi, S. Body composition in Iraqi Women with systemic lupus erythematosus. Glob. J. Health Sci, 2019; 11, 63-70.

Ali, N.S.M.; Zaidan, T.F. Oral manifestations, oral health status and saliva composition changes in a sample of Iraqi systemic lupus erythematosus patients. J. Baghdad Coll. Dent., 2012; 24, 65.

Nasir, H.A.; Sharba, Y.F.; Nasir, N.A. Lupus Nephritis, the therapy and the role of Rituximab in resistant cases. J. Fac. Med. Baghdad, 2013; 55, 327-332.

Abdulridha, R.H., Saud, A.M.; Alosami, M.H. Assessment of miR-146a Gene Polymorphisms in Patients with Systemic Lupus Erythematosus. Iraqi J. Sci., 2023; 573-582.

Fife, B.T.; Pauken, K.E. The role of the PD‐1 pathway in autoimmunity and peripheral tolerance. Ann. N. Y. Acad. Sci., 2011;1217, 45-59.

Jubel, J.M.; Barbati, Z.R.; Burger, C.; Wirtz, D.C.; Schildberg, F.A. The role of PD-1 in acute and chronic infection. Front. Immunol., 2020; 11, 487.

Lee, Y.H.; Woo, J.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Association of programmed cell death 1 polymorphisms and systemic lupus erythematosus: a meta-analysis. Lupus, 2009; 18, 9-15.

Curran, C.S.; Gupta, S.; Sanz, I.; Sharon, E. PD-1 immunobiology in systemic lupus erythematosus. J. Autoimmun., 2019, 97, 1-9.

Michot, J.M.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; Massard, C. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur. J. Cancer, 2016; 54, 139-148.

Kuhn, A.; Bonsmann, G.; Anders, H.J.; Herzer, P.; Tenbrock, K.; Schneider, M. The diagnosis and treatment of systemic lupus erythematosus. Dtsch. Arztebl. Int., 2015, 112, 423.

Alves, M.; Bastos, M.; Leitão, F.; Marques, G.; Ribeiro, G.; Carrilho, F. Vitamina D–importância da avaliação laboratorial. Rev. Port. Endocrinol. Diabetes Metabol., 2013, 8, 32-39.

Abo-Shanab, A.M.; Kholoussi, S.; Kandil, R.; Dorgham, D. Cytokines, 25-OH vit D and disease activity in patients with juvenile-onset systemic lupus erythematosus. Lupus, 2021, 30, 459-464.

Hassanalilou, T.; Khalili, L.; Ghavamzadeh, S.; Shokri, A.; Payahoo, L.; Bishak, Y.K. Role of vitamin D deficiency in systemic lupus erythematosus incidence and aggravation. Autoimmun. Highlights, 2018, 9, 1-10.

Bultink, I.E.; Lems, W.F. Systemic lupus erythematosus and fractures. RMD open, 2015, 1, e000069.

Bultink, I.E. Complications of systemic lupus erythematosus. Doctoral dissertation. Vrije Universiteit Amsterdam: Amsterdam, 2008.

Abdullah, D.A.; Al-Sharqi, S. A.H.; ALabbassi, H.M.; Swahab, M.; Almishhadany, M.S. Evaluation Pathogenesis Outcomes of Knee and Hip in Patients with Osteoarthritis Based on: Histopathological, Hematological, and Indicators of Inflammation. J. Res. Med. Dent. Sci., 2021, 9, 178-184.

Abdullah, D.A.; ALabassi, H.M.; Al-Sharqi, S.A. and Wahab, M.S. Possible etiological role of cd16 and tgf-β1 in the pathogenesis of osteoarthritis Iraqi patients. Biochem. Cell. Arch, 2022, 22, 2351-2356.

Kadri, Z.H.M. Effect of cigarette and water-pipe smoking on osteocalcin and RANKL serum levels among Iraqi university students. EurAsian J. Biosci., 2020,14, 3025-3030.

Ramesh, P.; Jagadeesan, R.; Sekaran, S.; Dhanasekaran, A.; Vimalraj, S. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling. Front. Endocrinol., 2021, 12.

Kong, Y.Y.; Yoshida, H.; Sarosi, I.; Tan, H.L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-dos-Santos, A.J.; Van, G.; Itie, A.; Khoo, W. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999, 397, 315-323.

Holliday, L.S.; Patel, S.S.; Rody Jr, W.J. RANKL and RANK in extracellular vesicles: Surprising new players in bone remodeling. Extracell. Vesicles Circ. Nucleic Acids, 2021, 2, 18.

Amarasekara, D.S.;Yu, J.; Rho, J. Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J. Immunol. Res, 2015, 2015, 12.

Bultink, I.E. Bone disease in connective tissue disease/systemic lupus erythematosus. Calcif. Tissue Int., 2018, 102, 575-591.

Moester M.J.; Papapoulos S.E.; Lowik C.W.; van Bezooijen R.L. Sclerostin: current knowledge and future perspectives. Calcif. Tissue Int., 2010, 87, 99–107.

Balemans, W.; Ebeling, M.; Patel, N.; Van Hul, E.; Olson, P.; Dioszegi, M.; Lacza, C.; Wuyts, W.; Van Den Ende, J.; Willems, P.; Paes-Alves, A.FIncreased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum. Mol. Genet., 2001, 10, 537-544.

Fayed, A.; Soliman, A.; Elgohary, R. Measuring Serum Sclerostin in Egyptian Patients With Systemic Lupus Erythematosus and Evaluating Its Effect on Disease Activity: A Case-Control Study. JCR: J Clin Rheumatol., 2021, 27, 161-167.

Hochberg M.C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum., 1997, 40, 1725-1725.

Ibrahim, W.S.; Abdelghani, S.E. Programmed cell death 1 gene polymorphism association with activity and severity of systemic lupus erythematosus and rheumatoid arthritis in Egyptian patients. Tanta Med. J., 2018, 46, 225.

Stefanski, A.L.; Wiedemann, A.; Reiter, K.; Hiepe, F.; Lino, A.C.; Dörner, T. Enhanced Programmed Death 1 and Diminished Programmed Death Ligand 1 Up‐Regulation Capacity of Post‐Activated Lupus B Cells. Arthritis Rheumatol., 2019, 71, 1539-1544.

Luo, Q; Kong, Y; Fu, B; Li, X; Huang, Q; Huang, Z.; Li, J. Increased TIM-3+ PD-1+ NK cells are associated with the disease activity and severity of systemic lupus erythematosus. Clin. Exp. Med., 2022, 22, 47-56.

Bassiouni, S.A.; Abdeen, H.M., Morsi, H.K.; Zaki, M.E.; Abdelsalam, M.; Gharbia, O.M. Programmed death 1 (PD-1) serum level and gene expression in recent onset systemic lupus erythematosus patients. Egypt. Rheumatol. 2021, 43, 213-218.

Her, M.; Kim, D.; Oh, M.; Jeong, H.; Choi, I. Increased expression of soluble inducible costimulator ligand (ICOSL) in patients with systemic lupus erythematosus. Lupus, 2009, 18, 501-507.

Shoenfeld, Y.; Giacomelli, R.; Azrielant, S.; Berardicurti, O.; Reynolds, J.A.; Bruce, I.N. Vitamin D and systemic lupus erythematosus-The hype and the hope. Autoimmun. Rev., 2018, 17, 19-23.

Khairallah, M.K.; Makarem, Y.S.; Dahpy, M.A. Vitamin D in active systemic lupus erythematosus and lupus nephritis: a forgotten player. Egypt. J. Intern. Med., 2020, 32, 1-9.

Shoenfeld, N.; Amital, H.; Shoenfeld, Y. The effect of melanism and vitamin D synthesis on the incidence of autoimmune disease. Nat. Clin. Pract. Rheumatol., 2009, 5, 99-105.

Holick, M.F. Vitamin D deficiency. N. Engl. J. Med., 2007, 357, 266-281.

Zargar, A.H.; Ahmad, S.; Masoodi, S.R.; Wani, A.I.; Bashir, M.I.; Laway, B.A.; Shah, Z.A. Vitamin D status in apparently healthy adults in Kashmir Valley of Indian subcontinent. Postgrad. Med. J., 2007, 83, 713-716.

Hussain, A.N.; Alkhenizan, A.H.; El Shaker, M.; Raef, H.; Gabr, A. Increasing trends and significance of hypovitaminosis D: a population-based study in the Kingdom of Saudi Arabia. Arch. Osteoporos., 2014, 9, 1-5.

Islam, M.A.; Khandker, S.S.; Alam, S.S.; Kotyla, P.; Hassan, R. Vitamin D status in patients with systemic lupus erythematosus (SLE): A systematic review and meta-analysis. Autoimmun. Rev., 2019, 18, 102392.

Attar, S.M. and Siddiqui, A.M. Vitamin d deficiency in patients with systemic lupus erythematosus. Oman Med. J., 2013, 28, 42.

Stockton, K.A.; Kandiah, D.A.; Paratz, J.D.; Bennell, K.L. Fatigue, muscle strength and vitamin D status in women with systemic lupus erythematosus compared with healthy controls. Lupus, 2012, 21, 271-278.

Kavadichanda, C.; Singh, P.; Maurya, S.; Tota, S.; Kiroubagarin, A.; Kounassegarane, D.; Anand, S.; Negi, V.S.; Aggarwal, A. Clinical and serological association of plasma 25-hydroxyvitamin D (25 (OH) D) levels in lupus and the short-term effects of oral vitamin D supplementation. Arthritis Res. Ther., 2023, 25, 1-10.

Nerviani, A.; Mauro, D.; Gilio, M.; Grembiale, R.D.; Lewis, M.J. To supplement or not to supplement? The rationale of vitamin D supplementation in systemic lupus erythematosus. Open Rheumatol. J., 2018, 12, 226-247.

Anastasilakis, A.D.; Goulis, D.G.; Polyzos, S.A.; Gerou, S.; Pavlidou, V.; Koukoulis, G.; Avramidis, A. Acute changes in serum osteoprotegerin and receptor activator for nuclear factor-κB ligand levels in women with established osteoporosis treated with teriparatide. Eur. J. Endocrinol., 2008, 158, 411-415.

Carmona-Fernandes, D.; Santos, M.J.; Perpétuo, I.P.; Fonseca, J.E.; Canhão, H. Soluble receptor activator of nuclear factor κB ligand/osteoprotegerin ratio is increased in systemic lupus erythematosus patients. Arthritis Res. Ther., 2011, 13, 1-6.

Eghbali-Fatourechi, G.; Khosla, S.; Sanyal, A.; Boyle, W.J.; Lacey, D.L.; Riggs, B.L. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J. Clin. Investig., 2003, 111, 1221-1230.

Rogers, A.; Eastell, R. Circulating osteoprotegerin and receptor activator for nuclear factor κB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab., 2005, 90, 6323-6331.

Hao, S.; Zhang, J.; Huang, B.; Feng, D.; Niu, X.; Huang, W. Bone remodeling serum markers in children with systemic lupus erythematosus. Pediatr. Rheumatol., 2022, 20, 1-6.

Ali, R.; Hammad, A.; El-Nahrery, E.; Hamdy, N.; Elhawary, A.K.; Eid, R. Serum RANKL, osteoprotegerin (OPG) and RANKL/OPG ratio in children with systemic lupus erythematosus. Lupus, 2019, 28, 1233-1242.

Sandal, S.; Rawat, A.; Gupta, A.; Singh, S. 141 soluble receptor activator of nuclear factor Κ b ligand (s rank-l) levels in paediatric onset sle. Lupus Sci. Med., 2017,4, A64.

Fernández-Roldán, C.; Genre, F.; López-Mejías, R.; Ubilla, B.; Mijares, V.; Cano, D.S.; Robles, C.L.; Callejas-Rubio, J.L.; Fernández, R.R.; Ruiz, M.E.; González-Gay, M.Á. Sclerostin serum levels in patients with systemic autoimmune diseases. BoneKEy Rep., 2016, 5.

Vargas-Muñoz, V.M.; Jimenez-Andrade, M.C.; Villarreal-Salcido, J.C.; Martinez-Martinez, A.; Acosta-Gonzalez, R.I.; Lugo-Zamudio, G.E.; Conde-Mercado, J.M.; Barbosa-Cobos, R.E.; Matias-Morales, F.A.; Ramirez-Rosas, M.B.; Jimenez-Andrade, J.M. Association between sclerostin and bone mineral density in a Mexican sample of women with rheumatoid arthritis: a pilot study. J. Arthritis, 2015,1-6.

Fayed, A.; Elgohary, R.; Fawzy, M. Evaluating the role of serum sclerostin as an indicator of activity and damage in Egyptian patients with rheumatoid arthritis: university hospital experience. Clin. Rheumatol., 2020, 39, 1121-1130.

Fernandez-Roldan, C.; Genre, F.; López-Mejías, R.; Ubilla, B.; Mijares, V.; Cano, D.S.; Robles, C.L.; Callejas-Rubio, J.L.; Fernández, R.R.; Ruiz, M.E.; González-Gay, M.Á. Sclerostin serum levels in patients with systemic autoimmune diseases. BoneKEy Rep., 2016, 5.

Durosier, C.; van Lierop, A.; Ferrari, S.; Chevalley, T.; Papapoulos, S.; Rizzoli, R. Association of circulating sclerostin with bone mineral mass, microstructure, and turnover biochemical markers in healthy elderly men and women. J. Clin. Endocrinol. Metab., 2013, 98,3873-3883.

Karataş, A.; Ömercikoğlu, Z.; Öz, B.; DAĞLI, A.F.; Catak, O.; Erman, F.; ŞAHİN, K.; Gözel, N.; Koca, S.S. Wnt signaling pathway activities may be altered in primary Sjogren's syndrome. Turk. J. Med. Sci., 2021, 51, 2015-2022.