Synthesis, Characterization and Study of the Effect of Nanoparticles on the Biological Activity of New Silicon Polymers and Their Nanocomposites
DOI:
https://doi.org/10.30526/37.4.3391Keywords:
Antibacterial activity, nanocomposite, silicone polymer, silver nanoparticles.Abstract
A new class of silicone polymers was synthesized based on dichlorodi(methyl)silane (DCDMS) with some organic compounds [M1-M6] containing terminal hydroxyl groups previously synthesized by different chemical reactions, and their nanocomposites were synthesized using silver nanoparticles (Ag-NPs). All polymers were synthesized using condensation polymerization and characterized by FTIR and 1HNMR spectra. The biological activity of silicone polymer P5 was evaluated using different weights of silver nanoparticles (1%, 3%, 5%, and 7%) against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The results showed that the higher the percentage of silver nanoparticles, up to 7%, the higher the biological activity, and accordingly, this percentage of silver nanoparticles was used to synthesize and measure the biological activity of nanocomposites P1-P5 and P6 against the same two types of bacteria. The nanocomposites showed antibacterial activities against Escherichia coli (Gram-negative) and against Staphylococcus aureus (Gram-positive) better than silicon polymers without silver nanoparticles (Ag-NPs). The results also showed that P6 was more antibacterial when pure than the other polymers. The polymer P'4 with silver nanoparticles (7%) was 20 times more antibacterial against Escherichia coli and 25 times more antibacterial against Staphylococcus aureus. This means that P'4 has more antibacterial activity against the same two types of bacteria than other nanocomposites.
References
Tu, Qin; Wang, J.C.; Zhang, Y.; , Liu, R.; Liu, W.; Ren, L.; Shen, S.; Xu, J.; Zhao,L.; Wang, J. Surface Modification of Poly(Dimethylsiloxane) and its Applications in Microfluidics-Based Biological Analysis. Reviews in Analytical Chemistry 2012, 31(3-4), 177–192. https://doi.org/10.1515/revac-2012-0016.
Racles, C.; Cazacu, M.; Fischer, B.; Opris, D.M. Synthesis and Characterization of Silicones Containing Cyanopropyl Groups and their Use in Dielectric Elastomer Actuators. Smart Materials and Structures 2013, 22(10), 104004. http://dx.doi.org/10.1088/0964-1726/22/10/104004.
Qiu, X.; Cai, H.; Fang, X.; Zheng, J. The Improved Thermal Oxidative Stability of Silicone Rubber by Incorporating Reduced Graphene Oxide: Impact Factors and Action Mechanism. Polymer Composites 2018, 39(4), 1105-1115. https://doi.org/10.1002/pc.24039.
Kamaruzzaman, NF.; Tan L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, AJ.; Chivu, A.; Pina M.D.F. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics?. International Journal of Molecular Sciences 2019, 20(11), 2747. https://doi.org/10.3390/ijms20112747.
Ishida, T. Antibacterial Mechanism of Ag+ Ions for Bacteriolyses of Bacterial Cell Walls Via Peptidoglycan Autolysins, and DNA Damages. MedCrave Online Journals 2018, 4(5), 345–350. 10.15406/mojt.2018.04.00125.
Aizamddin, M. F.; Mahat, M.M.; Ariffin, Z.Z.; Samsudin, I.; Razali, M.S.M.; Amir, M.A. Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications. Polymers 2021, 13(21), 3822. https://doi.org/10.3390/polym13213822.
Alsayari, A.; Muhsinah, A.B.; Asiri, Y.A.; Al-aizar, F.A.; Kheder, N.A.; Almarhoon , Z. M.; Ghabbour, H.A.; Mabkhot, Y.N. Synthesis, Characterization, and Biological Evaluation of Some Novel Pyrazolo [5,1-b]thiazole Derivatives as Potential Antimicrobial and Anticancer Agents. Molecules 2021, 26(17), 5383. https://doi.org/10.3390/molecules26175383.
Panariello, L.;Coltelli, M.B.; Hadrich, A.; Braca, F.; Fiori, S.; Haviv, A.; Miketa, F.; Lazzeri, A.; Staebler, A.; Gigante, V.; Cinelli, P. Antimicrobial and Gas Barrier Crustaceans and Fungal Chitin-Based Coatings on Biodegradable Bioplastic Films. Polymers 2022, 14(23), 5211. https://doi.org/10.3390/polym14235211.
Tang, R.; Muhammad, A.; Yang, J.; Nie, J. Preparation of Antifog and Antibacterial Coatings by Photopolymerization. Polymers for Advanced Technologies 2014, 25(6), 651–656. https://doi.org/10.1002/pat.3267.
Dhende, V.P.; Samanta, S.; Jones, D.M.; Hardin, I.R.; Locklin, J. One-Step Photochemical Synthesis of Permanent, Nonleaching, Ultrathin Antimicrobial Coatings for Textiles and Plastics. ACS Applied Materials & Interfaces 2011, 3(8), 2830–2837. https://doi.org/10.1021/am200324f.
Ghosh, S.; Mukherjee, S.; Patra, D.; Haldar, J. Polymeric Biomaterials for Prevention and Therapeutic Intervention of Microbial Infections. Biomacromolecules 2022, 23(3), 592–608. https://doi.org/10.1021/acs.biomac.1c01528.
Li, T.; Huang, P.; Li, X.; Wang, R.; Lu, Z.; Song, P.; He, Y. Synthesis of Polymer Nanospheres Conjugated Ce (IV) Complexes for Constructing Double Antibacterial Centers. Journal of Inorganic and Organometallic Polymers and Materials 2022, 23(3), 883–894. 10.1007/s10904-021-02165-0.
Venkatesan, R.; Rajeswari. N. ZnO/PBAT Nanocomposite Films: Investigation on the Mechanical and Biological Activity for Food Packaging. Polymer Advanced Technologies 2017, 28 (1), 20-27. https://doi.org/10.1002/pat.3847.
Felice, B.; Seitz, V.; Bach, M.; Rapp, Ch.; Wintermantel, E. Antimicrobial Polymers: Antibacterial Efficacy of Silicone Rubber–Titanium Dioxide Composites. Journal of Composite Materials 2017, 51(16), 2253–2262. https://doi.org/10.1007/s10904-021-02165-0.
Pillai, S.K.R.; Reghu, S.; Vikhe, Y.; Zheng, H.; Koh, Ch.H.; Park, M.B.Ch. Novel Antimicrobial Coating on Silicone Contact Lens Using Glycidyl Methacrylate and Polyethyleneimine Based Polymers, Macromolecular Rapid Communication 2020, 41(21), 2000175. https://doi.org/10.1002/marc.202000175.
Ahmed, B. J.; Matty, F. S.; Tomma, J.H. Electrical Insulation Breakdown Strength and Thermal Conductivity of Different Blended Nanocomposites of New Epoxy Resins. Ibn Al-Haitham Journal for Pure and Applied Sciences 2016, 29 (1),166-180. https://jih.uobaghdad.edu.iq/index.php/j/article/view/58.
Majeed, I.Y.; Ahmed, A.; Ahmed, R.M.; Abdul Karem, L.K. Comparison among the Synthesis of Some Azomethine Derivatives by Classical and Non-classical Methods, International Journal of Drug DeliveryTechnology 2021,11(2),515-517. https://impactfactor.org/ PDF/IJDDT/11/IJDDT,Vol11,Issue2, Article49.pdf.
Jamel, N.J.; Hussein, D. F.; Tomma, J.H. Synthesis and Characterization New Schiff Bases, Pyrazole and Pyrazoline Compounds Derived From Acid Hydrazide Containing Isoxazoline Ring. Ibn Al-Haitham Journal for pure and Applied Sciences 2014, 27(3), 435-447. https://jih.uobaghdad.edu.iq/index.php/j/article/view/308/250.
Karam, N.H.; Shanshal, A.K.; Al-Dujail, A.H. Synthesis, Characterization and Study of Mesomorphic Behavior of New Bent and Linear Core Compounds Containing Heterocyclic Rings. Molecular Crystals and Liquid Crystals 2021, 731(1), 66-79. https://doi.org/10.1080/15421406.2021.1966871.
Yousif, E ; Asaad, N.; Ahmed, D.S.; Mohammed, S.A.; Jawad, A.H. A Spectral, Optical, Microscopic Study, Synthesis and Characterization of PVC Films Containing Schiff Base Complexes. Baghdad Sciences Journal 2019, 16(1),65-60. https://doi.org/10.21123/bsj.2019.16.1.0056.
Tomma, J.H. Synthesis and Study of Model Compounds And Copolymers Containing The Silicone. Master Thesis, Baghdad University: Baghdad DC., 1996.
Hajeeassa, Kh.S.; Hussein, M.A.; Anwar, Y.; Tashkandi, N.Y.; Al-amshany, Z.M.; Nanocomposites Containing Polyvinyl Alcohol and Reinforced Carbon-Based Nanofiller: A Super Effective Biologically Active Material, Nanobiomedicine 2018, 5(5),184954351879481. https://doi.org/10.1177/1849543518794818.
Saleem, M.H.; Ahmed, B.J. Synthesis, Characterization and Study Bioactivity of Silver Nanocomposites. International Journal of Pharmaceutical Research 2020, 12(4),766-772. https://doi.org/10.31838/ijpr/134.
Yang, Z.; Han, Sh.; Zhang, R.; Feng ,Sh.; Zhang ,Ch.; Zhang, Sh. Effects of Silphenylene Units on the Thermal Stability of Silicone Resins. Polymer Degradation and Stability 2011, 96(12), 2145-2151. https://dx.doi.org/10.21608/ejchem.2021.93025.4397.
Garavand, Y.; Garavand, A.T.; Garavand, F.; Shahbazi, F.; Khodaei, D.; Cacciotti, I.; Starch-Polyvinyl Alcohol-Based Films Reinforced with Chitosan Nanoparticles: Physical, Mechanical, Structural, Thermal and Antimicrobial Properties. Applied Sciences 2022, 12(3),1111. https://doi.org/10.3390/app12031111.
Muslim, R.F.; Majeed, I.Y.; Saleh, S.E.; Saleh, M.M.; Owaid, M.N.; Abbas, J.A. Preparation, Characterization and Antibacterial Activity of some New Oxazolidin-5-One Derivatives Derived from Imine Compounds. Journal Chemical Health Risks 2022, 12(4), 725-732. 10.22034/jchr.2022.688557.
Ahmed, A.; Majeed, I.Y.; Asaad, N.; Ahmed, R.M.; Kamil, G.M.; Abdul Rahman, S.S. Some 3,4,5-Trisubstituted-1,2,4-triazole Synthesis, Antimicrobial Activity, and Molecular Docking Studies. Egyptian Journal Chemistry 2022, 65 (3), 593-604. https://dx.doi.org/10.21608/ejchem.2021.93025.4397.
Shareef, A.A.; Hassan, Z.A.; Kadhim, M.A.; Al-Mussawi, A.A. Antibacterial Activity of Silver Nanoparticles Synthesized by Aqueous Extract of Carthamus oxycantha M.Bieb. Against Antibiotics Resistant Bacteria. Baghdad Sciences Journal 2022, 19(3), 460-468. https://doi.org/10.21123/bsj.2022.19.3.0460.
Rabiee, N.; Ahmadi, S.; Iravani ,S.; Varma, R.S. Review: Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022, 14(10), 2182. https://doi.org/10.3390/pharmaceutics14102182.
Huq, M.A.; Ashrafudoulla, M.; Parvez, M.A.K.; Balusamy, S.R.; Rahman, M.M.; Kim, J.H.; Akter, S. Review Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers 2022, 14(23), 5302. https://doi.org/10.3390/polym14235302.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms