Effect of Iraqi Apricot Seed Extract on Some Physiological Parameters in Male Rats

Main Article Content

Noor Sabar Khalaf Mohammad
Alia Hussein Ali
Firas Subhi Salah

Abstract

Amygdalin specifically represents the apricot (Prunus armeniaca) seed in the Rosacea family of plants. Except for cyanogenic glycoside, the seeds include a variety of substances, including trace minerals, vitamins, carbohydrates, organic acids, esters, phenols, and terpenoids. It is well known that bioregulators have the ability to control the activity of certain hormones and enzymes. The current study examined the effect of Iraqi apricot seed extract on physiological parameters in male rats, including blood parameters, hormone parameters, and antioxidant parameters, as well as histological studies of the spleen and testes. The study comprised four groups, each consisting of six animals. The animals in the control group received distilled water as their treatment. G1 received an extract (10 mg b.w.), G2 received an extract (20 mg b.w.), and G3 received an extract (40 mg b.w) orally every day for 30 days. The results showed a significant increase in WBC and blood platelets (P≤0.05), as well as T3 and T4. When compared with the control, TSH shows a significant decrease (P≤0.01) in the three groups. While FSH, LH, and testosterone hormone showed a significant decrease (P≤0.01) in the G1 and G2 groups, MPO, MDA, GPX, SOD, vitamin C, and E showed a significant decrease (P≤0.01) when compared with the control group. Finally, the histological examination showed that the spleen and testis in all groups showed a normal appearance after 30 days.

Article Details

How to Cite
[1]
Mohammad, N.S.K. et al. 2024. Effect of Iraqi Apricot Seed Extract on Some Physiological Parameters in Male Rats. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 129–145. DOI:https://doi.org/10.30526/37.3.3392.
Section
Biology

Publication Dates

Received

2023-04-17

Accepted

2023-05-20

Published Online First

2024-07-20

References

Zeisel, S.H. Regulation of "Nutraceuticals". Science 1999, 285, 1853–1855. https://doi.org/10.1126/science.285.5435.1853

AlRawi, Ali. Medicinal plants in Iraq. Publishing house – Baghdad, 1988.

Al-Shahat, N.A. Volatile oils. Arab House for Publishing and Distribution, Cairo, Egypt, 2000. .

AL-Muhammadi, Q.N.R. Physiological Study to Investigate the Activity of an Aqueous Extract OfCinnamomum Cassiabark on the Blood Glucose Levels in Healthy and Diabetic Rats Induced by Streptozotocin (Stz). Baghdad Science Journal 2016, 13, 681. https://doi.org/10.21123/bsj.2016.13.4.0681 .

Aldulaimi, A.M.A.; Husain, F.F. Effect of Aqueous Extract Cyperus rotundus Tubers as Antioxidant on Liver and Kidney Functions in Albino Males Rats Exposed to Cadmium Chloride Toxic. Baghdad Science Journal 2019, 16, 315–322. https://doi.org/10.21123/bsj.2019.16.2.0315 .

Sommer, A. Nutritional Blindness. Xerophthalmia and Keratomalacia.; 1982; ISBN 0195029771. https://doi.org/10.1007/BF00158318.

Ruiz, D.; Egea, J.; Gil, M.I.; Tomás-Barberán, F.A. Characterization and Quantitation of Phenolic Compounds in New Apricot (Prunus Armeniaca L.) Varieties. Journal of Agricultural and Food Chemistry 2005, 53, 9544–9552. https://doi.org/10.1021/jf051539p

Salama, R.H.; Ramadan, A.; Alsanory, T.A.; Herdan, M.O.; Fathallah, O.M.; Alsanory, A.A. Experimental and Therapeutic Trials of Amygdalin. International Journal of Biochemistry Pharmacology 2019, 1, 21–26. https://doi.org/10.18689/ijbp-1000105.

Lerner, I.J. Laetrile: a lesson in cancer quackery. CA: A cancer Journal for Clinicians 1981, 31(2), 91–95. https://doi.org/10.3322/canjclin.31.2.91.

Shi, J.; Chen, Q.; Xu, M.; Xia, Q.; Zheng, T.; Teng, J.; Li, M.; Fan, L. Recent Updates and Future Perspectives about Amygdalin as a Potential Anticancer Agent: A Review. Cancer Medicine 2019, 8, 3004–3011. https://doi.org/10.1002/cam4.2197.

Fukuda, T.; Ito, H.; Mukainaka, T.; Tokuda, H.; Nishino, H.; Yoshida, T. Anti-Tumor Promoting Effect of Glycosides from Prunus persica Seeds. Biological and Pharmaceutical Bulletin 2003, 26, 271–273. https://doi.org/10.1248/bpb.26.271.

Harborn, J.B . Methods of extraction and isolation, phytochemical methods, 2nd edition, London, New York champan and hall, 1984. http://dx.doi.org/10.1007/978-94-009- 5570-7.

Odell, W.D.; Parlow, A.F.; Cargille, C.M.; Ross, G.T. Radioimmunoassay for Human Follicle—Stimulating Hormone: Physiological Studies. Journal of Clinical Investigation 1968, 47, 2551–2562. https://doi.org/10.1172%2FJCI105937.

Evans, G.O. Animal Clinical Chemistry: A Practical Handbook for Toxicologists and Biomedical Researchers; CRC Press, 2009, ISBN 0429141696. https://doi.org/10.1201/9781420080124.

Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Biochemistry 1979, 95, 351–358. https://doi.org/10.1016/0003-2697(79)90738-3.

Paglia, D.E.; Valentine, W.N. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. The Journal of Laboratory and Clinical Medicine 1967, 70, 158–169.

Misra, H.P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. Journal of Biological Chemistry 1972, 247, 3170–3175.

Bieri, J.G.; Tolliver, T.J.; Catignani, G.L. Simultaneous Determination of α-Tocopherol and Retinol in Plasma or Red Cells by High Pressure Liquid Chromatography. The American Journal of Clinical Nutrition 1979, 32, 2143–2149. https://doi.org/10.1093/ajcn/32.10.2143

Lin, P. Determination of Vitamin C by Spectrophotometric Method. Clinical Chemistry 1982, 28, 2225–2228.

Beutler, E.; Duron, O.; Kelly, B.M. Improved Method for Determination of Blood Glutathione. The Journal of Laboratory and Clinical Medicine 1963, 61, 882–888. https://doi.org/10.19127/mbsjohs.1108726.

Beers, R.F.; Sizer, I.W. A Spectrophotometric Method for Measuring the Breakdown of Hydrogen Peroxide by Catalase. Journal of Biological Chemistry 1952, 195, 133–140. https://doi.org/10.19127/mbsjohs.1108726.

Cary, N. Statistical Analysis System, User’s Guide. Statistical. Version 9. SAS. Inst. Inc. USA, 2012.

Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques E-Book; Elsevier health sciences, 2018, ISBN 0702068861.

Rogers, K. Blood: Physiology and Circulation; Britannica Educational Publishing, 2010, ISBN 1615302506.

Omer, H.A.A.; Ahmed, S.M.; Abedo, A.A.; El-Nomeary, Y.A.A.; Nasr, S.M.; Nassar, S.A. Incorporation Apricot Seed Kernel as Untraditional Source of Protein in Rabbit Rations. Bulletin of the National Research Centre 2020, 44, 1–9. http://dx.doi.org/10.1186/s42269-020-00292-1

Elwan, M.M.; Basyouny, M.; Amin, S.; Naggar, S. Prophylactic Effects of Apricot Seed Is Extract on Cyclophosphamide-Induced Leukopenia and Hepatorenal Toxicity in Male Mice. The Egyptian Journal of Experimental Biology 2020, 16, 47–55..

Hall, J.E.; Hall, M.E. Guyton and Hall Textbook of Medical Physiology E-Book: Guyton and Hall Textbook of Medical Physiology E-Book; Elsevier Health Sciences, 2020, ISBN 0323640036.

Halenar, M.; Chrastinova, L.; Ondruska, L.; Jurcik, R.; Zbynovska, K.; Tusimova, E.; Kovacik, A.; Kolesarova, A. The Evaluation of Endocrine Regulators after Intramuscular and Oral Application of Cyanogenic Glycoside Amygdalin in Rabbits. Biologia (Bratisl) 2017, 72, 468–474. http://dx.doi.org/10.1515/biolog-2017-0044

Attila, K.Ã.; Sirotkin, A. V; Maruniaková, N.; KolesÃ, A.; Bulla, J.; Grossmann, R. The Effect of Curcumin on Secretory Activity, Proliferation and Apoptosis of the Porcine Ovarian Granulosa Cells. Journal of Microbiology, Biotechnology and Food Sciences 2012, 2, 349–357.

Kolesarova, A.; Baldovska, S.; Roychoudhury, S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals 2021, 14, 881. https://doi.org/10.3390/ph14090881.

Kolesár, E.; Halenár, M.; Kolesárová, A.; Massányi, P. Natural Plant Toxicant-Cyanogenic Glycoside Amygdalin: Characteristic, Metabolism and the Effect on Animal Reproduction. Journal of Microbiology, Biotechnology and Food Sciences 2015, 4, 49. http://dx.doi.org/10.15414/jmbfs.2015.4.special2.49-50

Tanyildizi, S.; Bozkurt, T. In Vitro Effects of Linamarin, Amygdalin and Gossypol Acetic Acid on Hyaluronidase Activity, Sperm Motility and Morphological Abnormality in Bull Sperm. Turkish Journal of Veterinary & Animal Sciences 2004, 28, 819–824.

Rudolf, F.O.; Kadokawa, H. Expression of Estradiol Receptor, GPR30, in Bovine Anterior Pituitary and Effects of GPR30 Agonist on GnRH-Induced LH Secretion. Animal Reproduction Science 2013, 139, 9–17. https://doi.org/10.1016/j.anireprosci.2013.04.003

Kim, T.; Li, D.; Terasaka, T.; Nicholas, D.A.; Knight, V.S.; Yang, J.J.; Lawson, M.A. SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology 2019, 160, 2543–2555. https://doi.org/10.1210%2Fen.2019-00283

Michalcová, K.; Halenár, M.; Tušimová, E.; Kováčik, A.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Kolesár, E.; Kolesárová, A. Influence of Apricot Kernels on Blood Plasma Levels of Selected Anterior Pituitary Hormones in Male and Female Rabbits in Vivo. Animal Science and Biotechnologies 2016, 49, 109. http://dx.doi.org/10.15414/jmbfs.2020.10.2.321-324

Abboud, M.M.; Al Awaida, W.; Alkhateeb, H.H.; Abu-Ayyad, A.N. Antitumor Action of Amygdalin on Human Breast Cancer Cells by Selective Sensitization to Oxidative Stress. Nutrition and Cancer 2019, 71, 483–490. https://doi.org/10.1080/01635581.2018.1508731

Shim, S.M.; Kwon, H. Metabolites of Amygdalin under Simulated Human Digestive Fluids. International Journal of Food Sciences and Nutrition 2010, 61, 770–779. https://doi.org/10.3109/09637481003796314.

Albogami, S.; Hassan, A.; Ahmed, N.; Alnefaie, A.; Alattas, A.; Alquthami, L.; Alharbi, A. Evaluation of the Effective Dose of Amygdalin for the Improvement of Antioxidant Gene Expression and Suppression of Oxidative Damage in Mice. PeerJ 2020, 8, e9232. https://doi.org/10.7717/peerj.9232

Segal, A.W. How Neutrophils Kill Microbes. Annual Review of Immunology 2005, 23, 197–223. https://doi.org/10.1146/annurev.immunol.23.021704.115653

Kolesárová, A.; Džurňáková, V.; Michalcová, K.; Baldovská, S.; Chrastinová, Ľ.; Ondruška, Ľ.; Jurčík, R.; Tokárová, K.; Kováčiková, E.; Kováčik, A. The Effect of Apricot Seeds on Microscopic Structure of Rabbit Liver. Journal of Microbiology, Biotechnology and Food Sciences 2020, 10. http://dx.doi.org/10.15414/jmbfs.2020.10.2.321-324