Glutathione Mediates Growth Regulation of Chickpea Plant Cicer arietinum and Mitigates Salinity Stress.

Main Article Content

Amel Ghanim Muhmood Al-Kazzaz
Eman Hussain Al-Hayany
Rahaf Wail Attarbashi
Phanom Sutthisaksopon

Abstract

Glutathione is water-soluble with a low molecular weight and is commonly spread in plants. It is a co-factor in several biochemical reactions and acts together with signaling molecules and hormones, and its redox state activates signal transduction. The experiment was conducted in the botanical garden, Department of Biology, College of Education for Pure Sciences, Ibn Al- Haitham, University of Baghdad, during the growing season 2020-2021 to evaluate the potential effects of foliar spraying with (25, 50, 75 mg.L-1) glutathione in addition to the control (0) on the growth of chickpea plants subjected to sodium chloride salt (100, 200 mM.L-1) addition to the control (0). The results point out that salinity clearly decreased, as did plant height, branch number, shoot dry weight, nitrogen, phosphorus, potassium concentration, protein percentage, and increased sodium concentration in chickpea plants. A foliar spray of Glutathione, notably 50 and 75 mg.L-1, enhanced the tolerance of chickpea plants by improving growth traits.

Article Details

How to Cite
[1]
Al-Kazzaz, A.G.M. et al. 2024. Glutathione Mediates Growth Regulation of Chickpea Plant Cicer arietinum and Mitigates Salinity Stress. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 1 (Jan. 2024), 1–8. DOI:https://doi.org/10.30526/37.1.3404.
Section
Biology

Publication Dates

References

Ahmed, M.A.; Shalaby, M.S.; Sadak, M.Sh.; Gamal, El-Din, K.M.; Abdel-Baky, Y.R.; Khater, M.A. Physiological role of antioxidant in improving growth and productivity of chickpea Cicer arietinum L. grown under newly reclaimed sandy soil. Res. J. Pharmac. Biol. Chem. Sci., 2016; 7, 399- 409.

Flowers, T.J.; Gaur, P.M.; Gowda, C.L.L.; Krishnamurthy, L.; Samineni, S.; Siddique, K.H.M.; Turner, N.C.; Vadez, V.; Varshney, R.K.; Colmer, T.D. Salt sensitivity in chickpea. Plant Cell Environ., 2010; 33, 490-509. DOI: https://doi.org/10.1111/j.1365-3040.2009.02051.x

Zaccardelli, M.; Sonnante, G.; Lupo, F.; Piergiovanni, A.R.; Leghetti, G.; Sparvoli, F.; Lioi, L. Characterization of Italian chickpea Cicer arietinum L. germplasm by multidisciplinary approach. Genet. Resour. Crop Evol., 2013; 60, 865-877. DOI: https://doi.org/10.1007/s10722-012-9884-9

AL-Kazzaz, A. Gh.M. Effect of salinity stress and selenium spraying on broad bean plant Vicia faba L. Plant Arch. 2018; 18, 2, 2335-2339.

AL-Kareemawi, I. H. Kh. and AL-Kazzaz, A. Gh. M. a-Tocopherol foliar application can alleviate the adverse effect of salinity stress on wheat plant, Triticum aestivum L. Biochem. Cell. Arch., 2019; 19, 2, 3495-3499.

AL-Saidi, A. J.H.; AL-Kazzaz, A.G.M. The tolerance of wheat plant Triticum aestivum L. grown in saline media (sodium chloride) affected by foliar application with proline acid. J. Univ. Babylon, Special Issue–Proceeding of 5th Int. Conf. Environ. Sci., 2013; 227-237.

Al- Kazzaz , A. Gh. M. Effect both of kinetin and NPKZn fertilizer on mitigating the adverse effect of sodium chloride on sweet pepper plant Capsicum annuum L. Res. J. Pharm. Tech. 2019; 12, 3, 1259-1264.

AL-Kazzaz, A.Gh.M. Morpho-physiological study on the effect of Lead stress and selenium foliar application on growth of dill plant Anethum graveolens L. Plant Arch., 2020; 20 Supplement 1, 1777-1782.

Hossain, M.A.; Mostofa, M.G.; Fujita, M. Cross protection by cold-shock to salinity and drought stress-induced oxidative stress in mustard Brassica campestris L. seedlings. Molec. Plant Breed., 2013; 4, 50-70. DOI: https://doi.org/10.5376/mpb.2013.04.0007

Hossain, M.A.; Mostofa, N.G.; Diaz-Vivancos, P.; Burritt, D.J.; Fujita, M.; Tran, L.P. Glutathione in Plant Growth, Development, and Stress Tolerance. Springer; 1st ed. 2017. DOI: https://doi.org/10.1007/978-3-319-66682-2

Nazar, R.; Iqbal, N.; Syeed, S.; Khan, N.A. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J. Plant Physiol., 2011; 168, 807–815. DOI: https://doi.org/10.1016/j.jplph.2010.11.001

Salama, K.H.A.; Al-Mutawa, M.M. Glutathione-triggered mitigation in salt-induced alterations in plasma lemma of onion epidermal cells. Int J Agric Biol. 2009, 11, 639–642.

Sadak, M.Sh; Abd Elhamid, E.M.; Ahmed, M.R.M. Glutathione Induced Antioxidant Protection Against Salinity Stress in Chickpea Cicer arietinum L. Plant. Egypt. J. Bot., 2017; 57, 2, 293 -302. DOI: https://doi.org/10.21608/ejbo.2017.636.1029

Agiza, A.H.; El-Hineidy, M.T.; Ibrahim, M.E. The determination of the different fractions of phosphorus in plant and soil. Bull.FAO. Agric., 1960; Cairo Univ. 121.

Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters. Univ. Calif. Div. Agric. Sci., 1960; 161-170.

Matt, K.J. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci., 1970; 109, 214-220. DOI: https://doi.org/10.1097/00010694-197004000-00002

Page, A.L.; Miller, R.H.; Kenney, D.R. Methods of Soil Analysis.2nd ed, Agron. 9, Publisher, Madison, Wisconsin, USA, 1982.

Vopyan, V.G. Agricultural Chemistry. English translation. Mir ,Publishers 1st ed. 1984.

Rady, M.M.; Sadak, M.Sh.; El-Lethy, S.R.; Abd El- Hamid, E.M.; Abdelhamid, M.T. Exogenous α-tocopherol has a beneficial effect on Glycine max (L.) plants irrigated with diluted seawater. J. Hortic. Sci. Biotechnol., 2015; 90, 2, 195–202. DOI: https://doi.org/10.1080/14620316.2015.11513172

Taiz, L.; Zeiger, E. Plant Physiology. 5th ed. Sinauer Associates, Sunderland, UK., 629. 2010.

Sairam, R.K.; Snvastava, G.C.; Aganwal, S. ; Meena, R.C. Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 2005; 49, 1, 85- 91. DOI: https://doi.org/10.1007/s10535-005-5091-2

Hasanuzzaman,M;. Nahar,K. ; Anee, T.I.and Fujita,M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance . Physiol. Mol. Biol. Plants, 2017; 23, 2, 249–268.

Hussain, B.M.N.; Akram, S.; Sharif-Ar-Raffi B.D.J; Hossain, M.A. Exogenous glutathione improves salinity stress tolerance in rice (Oryza sativa L.) Plant Gene Trait, 2016; 7, 11,1–17. DOI: https://doi.org/10.5376/pgt.2016.07.0011

Semida, W.M.; Abd El-Mageed, T.A.; Abdalla, R.M.; Hemida, K.A.; Howladar, S.M.; Leilah, A.A.A.; Rady, M.O.A. Sequential antioxidants foliar application can alleviate negative consequences of salinity stress in Vicia faba L. Plants, 2021; 10, 5, 914.

Rajabi Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Piernik, A. foliar application of salicylic acid improves salt tolerance of sorghum (Sorghum bicolor (L.) Moench). Plants (Basel, Switzerland), 2022; 11, 3, 368.

Kattab, H. Role of Glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline condition. Aust. J. Basic Appl. Sci., 2007; 1, 323–332.

Hasanuzzaman, M.; Nahar, K.; Anee, T.I.; Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants., 2017; 23, 2, 249–268. DOI: https://doi.org/10.1007/s12298-017-0422-2

Gul, N.; Ahmad, P.; Wani, T.A.; Tyagi, A.; Aslam, S. Glutathione improves low temperature stress tolerance in pusa sheetal cultivar of Solanum lycopersicum. Sci Rep., 2022; 12, 12548.

Foyer, C.H.; Noctor, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 2005; 17, 1866–1875. DOI: https://doi.org/10.1105/tpc.105.033589

Kesawat, M.S.; Satheesh, N.; Kherawat, B.S.; Kumar, A.; Kim, H.-U.; Chung, S.-M.; Kumar, M. Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules-current perspectives and future directions. Plants, 2023, 12, 864.