A Study of the Relationship Between Pigment Production and Biofilm Formation in Pseudomonas aeruginosa

Main Article Content

Sally Abdul Aziz Karim
Luma Abdulhady Zwain
Estabraq A. Mahmoud

Abstract

Eighty eight isolates of Pseudomonas aeruginosa were obtained from Central Child Teaching Hospital, Imamin Al-Kadhimin Medical City, Baghdad Teaching Hospital, National Center for Educational Laboratories, Imam Ali Hospital, Ibn Al-Baladi Hospital, as well as (38) clinical isolation obtained from previous studies and (22) environmental isolation obtained from previous studies and it was studied the effect of the type of cultural medium, temperature and different pH numbers in the production of pigments. The results showed that the isolates of Pseudomonas clinical (Pc18) and (Pc40) had the ability to form green pigments after 24 hours of incubation in the nutrient broth and after 72 hours in the heart infusion broth and Luria bertani broth after 72 hours, and they were yellowish-green in color. It was also noted that the isolate Pc18 showed the green pigment at a temperature of 25, 37, and 41°C after an incubation period of 72, 24, and 120 hours respectively, while the isolate Pc40 showed the yellowish green pigment at a temperature of 25°C after an incubation period of 72 hours, and it had a green pigment at a temperature of 37 and 41°C at a 24 and 120 hours incubation period. The results also showed the formation of a yellowish-green color after 72 hours of incubation of Pc18 isolate, while Pc40 isolate showed its ability to form green after 48 hours in the alkaline medium. In the acidic medium, the ability of Pseudomonas aeruginosa bacteria to form color during the incubation period of 120 hours was not observed. In the neutral medium, the results showed that the pigment for the two isolates was absorbed after 24 hours. The results of morphological detection showed biofilm formation by 11.11% was poorly formed, 88.89% was medium formation, and no strong isolates were observed. There was no effect of pigment formation on the ability of Pseudomonas aeruginosa to form biofilm

Article Details

How to Cite
[1]
Karim, S.A.A. et al. 2024. A Study of the Relationship Between Pigment Production and Biofilm Formation in Pseudomonas aeruginosa. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 1–10. DOI:https://doi.org/10.30526/37.3.3417.
Section
Biology

How to Cite

[1]
Karim, S.A.A. et al. 2024. A Study of the Relationship Between Pigment Production and Biofilm Formation in Pseudomonas aeruginosa. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 3 (Jul. 2024), 1–10. DOI:https://doi.org/10.30526/37.3.3417.

Publication Dates

Received

2023-04-16

Accepted

2024-05-20

Published Online First

2024-07-20

References

Diggle, S.P.; Whiteley, M. Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 2020, 166(1), 30. DOI: https://doi.org/10.1099/mic.0.000860.

Hmood, A.A.; Zwain, L.A. Detection of Fima and Fimh Genes in Klebsiella pneumoniae Isolated from Necrotizing Enterocolitis Patients in Infants. Journal of Global Pharma Technology, 2009, 12(11), 336-372.

Sawada, H.;Fujikawa, T.; Osada, S.; Satou, M. Pseudomonas petroselini sp. nov., a pathogen causing bacterial rot of parsley in Japan. International Journal of Systematic and Evolutionary Microbiology, 2022,72(6), 005424. https://doi.org/10.1099/ijsem.0.005424 .

Urgancı, N.N.; Yılmaz, N.; Alaşalvar, G.K.; Yıldırım, Z. Pseudomonas aeruginosa and Its Pathogenicity. Turkish Journal of Agriculture-Food Science and Technology, 2022, 10(4), 726-738. https://doi.org/10.24925/turjaf.v10i4.726-738.4986.

Al-Araji, M.K.; Ali, S. 2-Aminoacetophenone as a virulent factor for Pseudomonas aeruginosa causing sever burn and wound infections in Iraq. Ibn Al Haitham J. Pure Appl. Sci, 2012, 25, 88-97. https://jih.uobaghdad.edu.iq/index.php/j/article/view/569.

AL-Fridawy, R.A.K.; Al-Daraghi, W.A.H.; Alkhafaji, M.H. Isolation and Identification of Multidrug Resistance Among Clinical and Environmental Pseudomonas aeruginosa Isolates. Iraqi Journal of Biotechnology, 2020, 19, 2.

Ezeador, C.O.; Ejikeugwu, P.C.; Ushie, S.N.; Agbakoba, N.R. Isolation, identification and prevalence of Pseudomonas aeruginosa isolates from clinical and environmental sources in Onitsha Metropolis, Anambra State. European Journal of Medical and Health Sciences,2020, 2(2), 1-5. https://doi.org/10.24018/ejmed.2020.2.2.188.

Pier, G.B.; Ramphal, R. Pseudomonas aeruginosa, Bennett, J.E.; Dolin, R.; Blaser, M.J. (Ed.s), In: Mandell, Douglas, and Bennett's principles and practice of infectious diseases. 7th ed. Philadelphia, PA 19103: Churchill Livinstone Elsevier; 2015, pp. 2835–2860. https://doi.org/10.1016/C2012-1-00075-6.

Obaid, S.A.; Al-Shwaikh, R.M. Evaluation the Efficacy of Bacteriophage Against Pseudomonas aeruginosa Isolated from Wound and Burn Infections. Pakistan Journal of Medical & Health Sciences, 2022, 16(04), 440-440. DOI: https://doi.org/10.53350/pjmhs22164440.

Riedel, S.; Morse, S.A.; Mietzner, T.A.; Miller, S. Jawetz Melnick & Adelbergs Medical Microbiology, 28th. McGraw Hill Professional, 2019.‏

Al-Mohammed, T.A.; Mahmood, H. Carbapenem Resistance Related with Phenazine Genes in Clinical Pseudomonas aeruginosa Isolates. The Egyptian Journal of Hospital Medicine, 2023, 90(1), 1629-1632. https://dx.doi.org/10.21608/ejhm.2023.283674.

Nowroozi, J.; Sepahi, A.A.; Rashnonejad, A. Pyocyanine biosynthetic genes in clinical and environmental isolates of Pseudomonas aeruginosa and detection of pyocyanine’s antimicrobial effects with or without colloidal silver nanoparticles. Cell Journal (Yakhteh),2012, 14(1), 7.

Seder, N.; Rayyan, W.A.; O'la Al-Fawares, M.H.; Bakar, A. Pseudomonas aeruginosa Virulence Factors and Antivirulence mechanisms to Combat Drug Resistance; A Systematic Review. Mortality, 2022, 10, 11.

Morin, C.D.; Déziel, E.; Gauthier, J.; Levesque, R.C.; Lau, G. W. An organ system-based synopsis of Pseudomonas aeruginosa virulence. Virulence, 2021, 12(1), 1469-1507.

https://doi.org/10.1080/21505594.2021.1926408.

Abdullah, R.M.; Al-Azzawi, S.N. DNA Analysis of qacE Gene in Pseudomonas Aeruginosa Isolated from Iraqi Patient. Journal of Applied Sciences and Nanotechnology, 2022, 2, 2. https://doi.org/10.53293/jasn.2022.4168.1077.

Al-Shwaikh, R.M.A.; Al-Shuwaikh, A.M.A.; Alarnawtee, A.F. Nucleotide sequences of the Pseudomonas aeruginosa algD gene isolated from Iraqi patients with otitis media. Current Research in Microbiology and Biotechnology, 2017, 5(3), 1062-1070.

Al-Shwaikh, R.M.A.; Alornaaouti, A.F. Detection of toxA gene in Pseudomonas aeruginosa that isolates from different clinical cases by using PCR. Ibn AL-Haitham Journal For Pure and Applied Science, 2018, 26-30. DOI:10.30526/2017.IHSCICONF.1767.

Mayyahi, A.W.; Al-Hashimy, A.B.; AL-Awady, K.R. Molecular detection of exoU and exoS among Pseudomonas aeruginosa isolates from Baghdad and Wasit, Iraq. Iraqi Journal of Biotechnology, 2018, 17, 1.

Vinh, N.Q.; Uyen, N.H.; Thuan, N.C.; Loi, N.T.T. Increased Production of Pyocyanin in Recombinant Pseudomonas aeruginosa Ps39-Phzms Strain Harboring the Pucp24-Phzms Plasmid. Vietnam Journal of Biotechnology,2022, 20(1), 135-142. DOI: https://doi.org/10.15625/1811-4989/16154.

Thi, M.T.T., Wibowo, D.; Rehm, B.H. Pseudomonas aeruginosa biofilms. International Journal of Molecular Sciences, 2022, 21(22), 8671. DOI: 10.3390/ijms21228671.

Zhu, T.; Yang, C.; Bao, X.; Chen, F.; Guo, X. Strategies for controlling biofilm formation in food industry. Grain & Oil Science and Technology, 2022, 4(5), 179-186..

Vetrivel, A.; Ramasamy, M.; Vetrivel, P.;Natchimuthu, S.; Arunachalam, S.; Kim, G.S.; Murugesan, R. Pseudomonas aeruginosa biofilm formation and its control. Biologics, 2021, 1(3), 312-336. DOI: https://doi.org/10.3390/biologics1030019.

Elbargisy, R.M. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. Saudi Journal of Biological Sciences,2021,28(1), 993-1000. DOI: 10.1016/j.sjbs.2020.11.031

Gajdács, M.; Baráth, Z.; Kárpáti, K.; Szabó, D.; Usai, D.; Zanetti, S.;Donadu, M. G. No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics, 2021,10(9), 1134.

Seiffein, N.L.; Ali, G.H. Effect of subinhibitory concentrations of selected antibiotics and propolis on pyocyanin and biofilm production among Pseudomonas aeruginosa isolates in Alexandria, Egypt. Egyptian Journal of Medical Microbiology, 2021, 30(4), 129-137. DOI: 10.21608/EJMM.2021.198932.

Shamkhi, G.K.; Khudaier, B.Y. Isolation and molecular identification of mdrPseudomonas aeruginosa from animals and patients in Basrah province. Basrah Journal of Veterinary Research, 2020, 19(2), 62-75. DOI: 10.23975/bjvetr.2020.174153.

SivasankaraNarayani, S.; Saranya, P.; Lokesh, P.;Ravindran, J. Identification of Bioactive Compounds, Characterization, Optimization and Cytotoxic Study of Pyocyanin against Colon Cancer Cell Line (HT-29). Journal of Chemical and Pharmaceutical Research, 2021, 13(6), 01-18.

Vipin, C.; Ashwini, P.;Kavya, A.V.; Rekha, P.D. Overproduction of pyocyanin in Pseudomonas aeruginosa by supplementation of pathway precursor shikimic acid and evaluation of its activity. Research Journal of Pharmacy and Technology, 2017, 10(2), 533-536. DOI: 10.5958/0974-360X.2017.00106.8.

Chin, L.S.;Raynor, M.C.; Wei, X.; Chen, H.Q.; Li, L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. Journal of Biological Chemistry, 2001, 276(10), 7069-7078. DOI: 10.1074/jbc.M004129200

Wurtzel, O.; Yoder-Himes, D.R.; Han, K.; Dandekar, A.A.;Edelheit, S., Greenberg, E.P.; Lory, S. The single-nucleotide resolution transcriptome of Pseudomonas aeruginosa grown in body temperature. PLoSPathog, 2012, 8(9), e1002945. DOI: 10.1371/journal.ppat.1002945

Devnath, P.; Uddin, M. K.; Aha, F. Extraction, purification and charact Pseudomonas aeruginosa. Extraction, 2017, 6(5), 1-9. DOI: https://connectjournals.com/03896.2020.20.5585.

DeBritto, S.;Gajbar, T.D.; Satapute, P.;Sundaram, L.; Lakshmikantha, R.Y.; Jogaiah, S.; Ito, S.I. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. Scientific Reports, 2020, 10(1), 1542. DOI: 10.1038/s41598-020-58335-6.

Iiyama, K.; Takahashi, E.; Lee, J.M.; Mon, H.; Morishita, M.;Kusakabe, T.;Yasunaga-Aoki, C. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiology Letters, 2017, 364, 7. DOI: https://doi.org/10.1093/femsle/fnx051.

Lima, J.L.D.C.; Alves, L.R.; Jacomé, P.R.L.D.A.; BezerraNeto, J.P.; Maciel, M.A.V.,; Morais, M.M.C.D. Biofilm production by clinical isolates of Pseudomonas aeruginosa and structural changes in LasR protein of isolates non biofilm-producing. Brazilian Journal of Infectious Diseases, 2018, 22, 129-136. DOI: 10.1016/j.bjid.2018.03.003.

Davarzani, F.; Saidi, N.; Besharati, S.; Saderi, H.; Rasooli, I.; Owlia, P. Evaluation of antibiotic resistance pattern, alginate and biofilm production in clinical isolates of Pseudomonas aeruginosa. Iranian Journal of Public Health, 2021, 50(2), 341. DOI: 10.18502/ijph.v50i2.5349.

Mubarak, K.I. Detection of Some Virulence Factors and Antibiotics Susceptibility of Psudomonas aeruginosa Clinical Isolates. International Journal of Drug Delivery Technology, 2021, 11(1), 170-174. DOI: 10.25258/ijddt.11.11.31.

Reichhardt, C.; Parsek, M.R. Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Frontiers in Microbiology, 2019, 10, 677. DOI: 10.3389/fmicb.2019.00677.

Al-Khazraji, S.F.R.; Al-Maeni, M.A.R. Optimization of some environmental and nutritional conditions using microtiter plate for Pseudomonas aeruginosa biofilm formation. Journal of Animal Behaviour and Biometeorology, 2021, 9(4), 2136-2136. DOI: https://doi.org/10.31893/jabb.21036.

Rajabi, H.; Salimizand, H.; Khodabandehloo, M.; Fayyazi, A.;Ramazanzadeh, R. Prevalence of algD, pslD, pelF, Ppgl, and PAPI-1 Genes Involved in Biofilm Formation in Clinical Pseudomonas aeruginosa Strains. BioMed Research International, 2022. https://doi.org/10.1155/2022/1716087.

Ma, Y.; Liu, Y.; Bi, Y.; Han, X.; Jin, Y.;Xu, H.; Qiao, M. OsaR (PA0056) functions as a repressor of the gene fleQ encoding an important motility regulator in Pseudomonas aeruginosa. Journal of Bacteriology, 2021, 203(20), e00145-21. DOI: 10.1128/JB.00145-21.