Simultaneous Quantitative Determination of Ciprofloxacin and Hydrocortisone by H-Point Standard Addition Method
Main Article Content
Abstract
Ciprofloxacin (Cip) and hydrocortisone (Hyd) were simultaneously measured as hydrochloride and sodium succinate, respectively, using the H-point standard addition method (HPSAM). The approach can precisely identify Cip in the presence of Hyd with various analyte-to-interference ratios (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5µg.ml-1) of Cip, at the wavelengths of (236 and 257) nm. In the same way, Hyd was analyzed in the presence of Cip in different analytes with an interference ratio of (5:5, 5:10, 10:5, 10:10) µg.mL-1, in mixed samples containing (1-5 µg.mL-1) of Hyd, at wavelengths of (266 and 278) nm. The satisfactory results show good reproducibility of the developed method (RSD equals 0.9735-1.6825 and 0.9692-1.7671 for Cip and Hyd, respectively). The results also show that the excipients had no influence on the assaying of the above drugs (Recovery, 98.87–101.73). The recommended technique has successfully been used to determine the Cip and Hyd in pharmaceutical composites simultaneously with an RSD range of (0.972 to 1.671) and (0.898 to 1.820) for Cip and Hyd, respectively.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTermsPublication Dates
References
Al-Omar, M.A. Ciprofloxacin: Analytical Profile. Profiles Drug Subst Excip Relat Methodol 2005, 31, 179–207, https://doi:10.1016/S0099-5428(04)31005-1. DOI: https://doi.org/10.1016/S0099-5428(04)31005-1
Kourbeti, I.S.; Alegakis, D.E.; Maraki, S.; Samonis, G. Impact of Prolonged Treatment with High-Dose Ciprofloxacin on Human Gut Flora: A Case Report. J Med Case Rep 2010, 4, 111, https://doi:10.1186/1752-1947-4-111. DOI: https://doi.org/10.1186/1752-1947-4-111
Badawy, S.; Yang, Y.; Liu, Y.; Marawan, M.A.; Ares, I.; Martinez, M.-A.; Martínez-Larrañaga, M.-R.; Wang, X.; Anadón, A.; Martínez, M. Toxicity Induced by Ciprofloxacin and Enrofloxacin: Oxidative Stress and Metabolism. Crit Rev Toxicol 2021, 51, 754–787, https://doi:10.1080/10408444.2021.2024496.
Shariati, A.; Arshadi, M.; Khosrojerdi, M.A.; Abedinzadeh, M.; Ganjalishahi, M.; Maleki, A.; Heidary, M.; Khoshnood, S. The Resistance Mechanisms of Bacteria against Ciprofloxacin and New Approaches for Enhancing the Efficacy of This Antibiotic. Front Public Health 2022, 10, https://doi:10.3389/fpubh.2022.1025633
Lemus Gallego, J.M.; Arroyo, J.P. Determination of Hydrocortisone and Associated Compounds in Pharmaceutical Preparations by Micellar Electrokinetic Chromatography. J Liq Chromatogr Relat Technol 2003, 26, 1011–1025, https://doi:10.1081/JLC-120020089. DOI: https://doi.org/10.1081/JLC-120020089
Knutsson, U.; Dahlgren, J.; Marcus, C.; Rosberg, S.; Brönnegård, M.; Stierna, P.; Albertsson-Wikland, K. Circadian Cortisol Rhythms in Healthy Boys and Girls: Relationship with Age, Growth, Body Composition, and Pubertal Development. J Clin Endocrinol Metab 1997, 82, 536–540, https://doi:10.1210/jcem.82.2.3769 DOI: https://doi.org/10.1210/jcem.82.2.3769
Johns, M.; George, S.; Taburyanskaya, M.; Poon, Y.K. A Review of the Evidence for Corticosteroids in COVID-19. J Pharm Pract 2022, 35, 626–637, https://doi:10.1177/0897190021998502.
Hindmarsh, P.C.; Geertsma, K. Hydrocortisone. In Congenital Adrenal Hyperplasia; Elsevier, 2017; pp. 231–249, https://shop.elsevier.com/books/congenital-adrenal-hyperplasia/hindmarsh/978-0-12-811483-4. DOI: https://doi.org/10.1016/B978-0-12-811483-4.00020-9
Abdullah, M.; Salih, E. Indirect Spectrophotometric Determination of Famotidine and Ciprofloxacin Hydrochloride in Pharmaceuticals Using N-Bromosuccinimde and Janus Green B Dye. JOURNAL OF EDUCATION AND SCIENCE 2022, 31, 38–57, https://doi:10.33899/edusj.2022.132289.1204
Hussein, M.A.; Omar, K.M. Indirect Spectrophotometric Estimation of Ciprofloxacin Hydrochloride in Pharmaceuticals Using N-Bromosuccinimide and Methylene Blue Dye. Egypt J Chem 2022, 65, 207–214.
Mostafa, S.; El-Sadek, M.; Alla, E.A. Spectrophotometric Determination of Ciprofloxacin, Enrofloxacin and Pefloxacin through Charge Transfer Complex Formation. J Pharm Biomed Anal 2002, 27, 133–142, https://doi:10.1016/S0731-7085(01)00524-6. DOI: https://doi.org/10.1016/S0731-7085(01)00524-6
Pascual-Reguera, M. Solid-Phase UV Spectrophotometric Method for Determination of Ciprofloxacin. Microchemical Journal 2004, 77, 79–84, https://doi:10.1016/j.microc.2004.01.003. DOI: https://doi.org/10.1016/j.microc.2004.01.003
Taghizade, M.; Ebrahimi, M.; Fooladi, E.; Yoosefian, M. Simultaneous Spectrophotometric Determination of the Residual of Ciprofloxacin, Famotidine, and Tramadol Using Magnetic Solid Phase Extraction Coupled with Multivariate Calibration Methods. Microchemical Journal 2021, 160, 105627, https://doi:10.1016/j.microc.2020.105627.
Qi, Y.J.; Perveen, N.; Khan, N.H. Comparative Purity Study of UV Spectrophotometric and Fourier-Transform Infrared Spectroscopic (FTIR) Techniques for the Determination of Ciprofloxacin Hydrochloride Tablets. Biomed J Sci Tech Res 2020, 32, 24973–24987,https://doi: 10.26717/BJSTR.2020.32.005246
Sadiq, K.A.; Mezaal, E.N.; Mohammed, M.A. Simultaneous Spectrophotometric Method for Determination of Both Ciprofloxacin and Cephalexin by Using H-Point Standard Addition Method. Baghdad Science Journal 2023, https://doi:10.21123/bsj.2023.8332.
Patel, M.N.; Bhatt, B.S.; Gandhi, D.S.; Dosi, P.A.; Parmar, P.A. Spectrophotometric Determination of Ciprofloxacin by Ion Pair Formation. Journal of Analytical Chemistry 2012, 67, 655–660, https://doi: 10.1134/S1061934812050103 DOI: https://doi.org/10.1134/S1061934812050103
Lemus Gallego, J.M.; Pérez Arroyo, J. Spectrophotometric Determination of Hydrocortisone, Nystatin and Oxytetracycline in Synthetic and Pharmaceutical Preparations Based on Various Univariate and Multivariate Methods. Anal Chim Acta 2002, 460, 85–97, https://doi: 10.1016/S0003-2670(02)00138-1. DOI: https://doi.org/10.1016/S0003-2670(02)00138-1
Lotfy, H.M.; Hassan, N.Y.; Elgizawy, S.M.; Saleh, S.S. Comparative Study of New Spectrophotometric Methods; An Application on Pharmaceutical Binary Mixture of Ciprofloxacin Hydrochloride and Hydrocortisone. Journal of the Chilean Chemical Society 2013, 58, 1892–1898, https://doi:10.4067/S0717-97072013000300022. DOI: https://doi.org/10.4067/S0717-97072013000300022
Lemus Gallego, J.M.; Pérez Arroyo, J. Simultaneous Determination of Hydrocortisone and Zn-Bacitracin by Spectrophotometric Derivative and Multivariate Methods. Microchimica Acta 2003, 141, 133–141, https://doi:10.1007/s00604-002-0940-6. DOI: https://doi.org/10.1007/s00604-002-0940-6
Blanco, M.; Coello, J.; Iturriaga, H.; Maspoch, S.; Villegas, N. Kinetic Spectrophotometric Determination of Hydrocortisone Acetate in a Pharmaceutical Preparation by Use of Partial Least- Squares Regression. Analyst 1999, 124, 911–915, https://doi:10.1039/a900856j. DOI: https://doi.org/10.1039/a900856j
Ahmed, M.K.; Michael, A.M.; Hassan, S.A.-M.; Abbas, S.S. Different Spectrophotometric Methods Manipulating Ratio Spectra for the Assay of Hydrocortisone Acetate and Clioquinol in Their Topical Preparation. European Journal of Chemistry 2021, 12, 265–272, https://doi:10.5155/eurjchem.12.3.265-272.2093.
Pyka, A.; Babuska-Roczniak, M.; Bochenska, P. Determination of Hydrocortisone in Pharmaceutical Drug by TLC with Densitometric Detection in UV. J Liq Chromatogr Relat Technol 2011, 34, 753–769, https://doi: 10.1080/10826076.2011.563891. DOI: https://doi.org/10.1080/10826076.2011.563891
Savchenko, L.P.; Vrakin, V.O.; Grudko, V.O.; Krutskikh, T. V; Yakovenko, V.K.; Georgiyants, V.A. Selective Spectrophotometric Method for the Hydrocortisone Butyrate Quantitative Determination in Compounding Ointment in Presence of Nitrofural and Procaine Hydrochloride. J Appl Pharm Sci 2017, 7, 62–68, https://doi: 10.7324/JAPS.2017.70809. DOI: https://doi.org/10.7324/JAPS.2017.70809
Reig, F.B.; Falcó, P.C. H-Point Standard Additions Method. Part 1. Fundamentals and Application to Analytical Spectroscopy. Analyst 1988, 113, 1011–1016, https://doi:10.1039/AN9881301011. DOI: https://doi.org/10.1039/AN9881301011
Eskandari, H.; Kamali, Y. H-Point Standard Addition Method for the Selective Simultaneous Determination of Nickel and Copper Using 1-(2-Pyridylazo)-2-Naphthol in Tween 80 Micellar Media. Analytical Sciences 2004, 20, 1095–1098, https://doi:10.2116/analsci.20.1095. DOI: https://doi.org/10.2116/analsci.20.1095
Blasco-Gomez, F.; Bosch-Reig, F.; Campins-Falco, P.; Molins-Legua, C.; Herráez-Hernández, R. H-Point Curve Isolation Method for Coupled Liquid Chromatography and UV− Visible Spectrophotometry. Anal Chem 2000, 72, 2559–2565, https://doi: 10.1021/ac990649q. DOI: https://doi.org/10.1021/ac990649q
Hajian, R.; Shams, N.; Rad, A. Application of H-Point Standard Addition Method for Simultaneous Spectrophotometric Determination of Hydrochlorothiazide and Propranolol. J Braz Chem Soc 2009, 20, 860–865, https://doi:10.1590/S0103-50532009000500009. DOI: https://doi.org/10.1590/S0103-50532009000500009
Zolgharnein, J. Simultaneous Determination of Fe(II) and Fe(III) by Kinetic Spectrophotometric H-Point Standard Addition Method. Talanta 2002, 57, 1067–1073, https://doi:10.1016/S0039-9140(02)00133-9. DOI: https://doi.org/10.1016/S0039-9140(02)00133-9
Safavi, A.; Moradlou, O. Simultaneous Kinetic Determination of Paracetamol and P‐Aminophenol by Using H‐Point Standard Addition Method. Anal Lett 2004, 37, 2337–2349, https://doi:10.1081/AL-200028103. DOI: https://doi.org/10.1081/AL-200028103
Kaur, P.P.; Gupta, U. H-Point Standard Addition Method for Simultaneous Determination of Maneb and Zineb. E-Journal of Chemistry 2009, 6, 106–112, https://doi.org/10.1155/2009/514251. DOI: https://doi.org/10.1155/2009/514251
Ronowicz, J.; Kupcewicz, B.; Pałkowski, Ł.; Bilski, P.; Siódmiak, T.; Marszałł, M.; Krysiński, J. Simultaneous Determination of Ciprofloxacin Hydrochloride and Hydrocortisone in Ear Drops by High Performance Liquid Chromatography. Chemical Papers 2014, 68, 861–870, https://doi.org/10.2478/s11696-013-0526-2. DOI: https://doi.org/10.2478/s11696-013-0526-2