Perturbation of Weyl’s Theorems for Unbounded  Upper Triangular Operator Matrices

Authors

DOI:

https://doi.org/10.30526/38.4.3473

Keywords:

Browder’s Spectrum, Spectral Properties, Upper Triangular Operator Matrices, Weyl’s Spectrum, Weyl’s Theorems

Abstract

Let  be an upper triangular operator matrix which is unbounded and defined on , where  is infinite dimensional Hilbert space. This paper is concerned with new spectral properties which defined to other bounded operators. Some sufficient and necessary conditions are given in which these properties are equivalent. We further investigate the relations among Weyl’s type theorems and Brodwe’s theorems for this type of operator under some conditions. As an application the paper define the plate pending problem equation with henge end, fixed end and free end, after transform it to Hamitonian matrix then calculate the spectrum sets for this matrix which leads to if A has eigenvalues of finite multiplicity, so is M. Inaddition if  has finite ascent this implies that the Hamiltonian operator M has finite ascent

Author Biographies

  • Dalia S. Ali, Mathematics Department, College of Science, University of Baghdad, Baghdad, Iraq

    Mathematics Department, College of Science, University of Baghdad, Baghdad, Iraq

  • Buthainah A.A. Ahmed, Mathematics Department, College of Science, University of Baghdad, Baghdad, Iraq

    math

References

1. Weyl H. Überbeschränkte quadratische Formen, deren Differenz vollstetig ist. Rend Circ Mat Palermo. 1909; 27(1) : 373–392. https://link.springer.com/article/10.1007/BF03019655.

2. Coburn LA. Weyl's theorem for nonnormal operators. Michigan Math J. 1966; 13(3):285–288. http://dx.doi.org/10.1307/mmj/1031732778.

3. Berkani M, Arroud A. Generalized Weyl's theorem and hyponormal operators. J Aust Math Soc. 2004; 76(2):291–302.http://doi.org/10.1017/S144678870000896X.

4. Gupta A, Mamtani K. Weyl type theorems for unbounded hyponormal operators. Kyungpook Math J. 2015; 55(3):531–540. http://dx.doi.org/10.5666/KMJ.2015.55.3.531.

5. Berkani M, Moalla N. B-Fredholm properties of closed invertible operators. Mediterr J Math. 2016; 13:4175–4185. http://doi.org/10.1007/s00009-016-0738-0.

6. Chourasia N, Ramanujan P. Paranormal operators on Banach spaces. Bull Aust Math Soc. 1980; 21(2):161–168. https://doi.org/10.1017/S0004972700005980.

7. Aiena P, Triolo S. Weyl-type theorems on Banach spaces under compact perturbations. Mediterr J Math. 2018;15:1–18. http://doi.org/10.1007/s00009-018-1176-y.

8. Rashid MH. Variations of Weyl Type Theorems for Upper Triangular Operator Matrices. Acta Math Vietnam. 2021; 46(4):719–735. http://doi.org/10.1007/s40306-021-00431-4.

9. Gupta A, Mamtani K. Weyl-type theorems for unbounded posinormal operators. J Contemp Math Anal. 2017; 52(4):191–197. https://doi.org/10.3103/S1068362317040057.

10. Finch J. The single valued extension property on a Banach space. Pac J Math. 1975;58(1):61–69. http://dx.doi.org/10.2140/pjm.1975.58.61.

11. Aiena P. Fredholm and local spectral theory. Berlin: Springer; 2004.

12. Jamil Z. Z, Abdullateef A. K. Data Dependence Resultand Stability Of Picard-S Iteration Scheme For Approximating Fixed Point Of Almost Contraction Mappings. Int. J. Advanced Research 2016; 4(5):760–763. http://dx.doi.org/10.21474/IJAR01/520.

13. Khaleefah SA, Ahmed BA. Spectrum of soft compact linear operator with properties. J Phys Conf Ser. 2020; 1530(1):012107. http://dx.doi.org/ 10.1088/1742-6596/1530/1/012107.

14. Rajij AG, Ali DS, Cakalli H, Al-Saidi NM. Posinormality of operators treated by Weyl's theorem on unbounded Hilbert space. Iraqi J Comput Sci Math. 2024; 5(4): https://doi.org/10.52866/2788-7421.1198.

15. Ali DS, Wazi MT, Almuttalibi RAY, Al-Saidi NMG. Upper triangular matrices property on unbounded Hilbert spaces: Different Weyl type findings. Bol Soc Paran Mat. 2025; 23:1–10. https://doi.org/10.5269/bspm.70929.

16. Liu Y, Cao X. a-Weyl’s theorem and hypercyclicity. Monatshefte für Mathematik. 2024; 204:107–125. https://doi.org/10.1007/s00605-024-01951-5.

17. Xu W, Aponte E, Vasanthakumar P. The property (ω π) as a generalization of the a Weyl theorem. AIMS Math. 2024; 9(9):25646–25658. https://doi.org/10.3934/math.20241567.

18. Sun Y, Cao X. Criteria for the Property (UWE) and the a Weyl theorem. Funct Anal Appl. 2023; 56(3):216–224. https://doi.org/10.1134/S0016266322030054.

19. Li S, Zhang Y, Cao X. Fa-Weyl’s theorem and a Weyl’s theorem for bounded linear operators. ECNU J Math. 2025; 2025(1):13–27. https://doi.org/10.3969/j.issn.1000-5641.2025.01.002.

20. Kong Y, Ren Y, Jiang L. Spectral theory of B-Weyl elements and the generalized Weyl’s theorem in primitive C*-algebra. Turk J Math. 2022; 46(5):1927–1944. https://doi.org/10.55730/1300-0098.3242.

21. Zhou D, Chen J. Further results on two stronger variants of Weyl’s theorem. Mediterr J Math. 2025; 22:68. https://doi.org/10.1007/s00009-025-02816-3

Downloads

Published

20-Oct-2025

Issue

Section

Mathematics

How to Cite

[1]
Ali, D.S. and Ahmed, B.A. 2025. Perturbation of Weyl’s Theorems for Unbounded  Upper Triangular Operator Matrices. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 287–294. DOI:https://doi.org/10.30526/38.4.3473.