Immunological Role of IL-3, IL-5 and Some Inflammation Markers in a Sample of Iraqi Patients with Rheumatoid Arthritis

Main Article Content

Shams A. Salman
Rakad M. Kh. AL-Jumaily

Abstract

Rheumatoid arthritis (RA) occurs through joint inflammation and affects approximately one in 200 adults worldwide, with women affected two to three times more frequently than men. The design of this study is to examine serum levels and changes in immunological markers in Iraqi patients with RA. To evaluate the advantages of clinical biomarkers of autoimmune disorderliness as well as changes in some immunological markers and clinical outcomes associated with Iraqi rheumatoid arthritis patients. Interleukins-3 and 5 (IL-3 and IL-5) were quantified by ELISA assay kits in the serum of 60 patients with RA disease (age range 20–60 years) and 30 age-matched healthy control groups. The BMI (body mass index), C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), anti-cyclic citrullinated peptide (anti-CCP), and complete blood count (CBC) were also measured. The results of IL-3 and IL-5 (341.56 ±12.10 and 504.28 ±25.20) levels displayed a significant increase in RA patients compared to control (154.66 ±9.24 and 117.61 ±3.73). The levels of ESR and Ant-CCP (37.60 ±2.72 and 0.637 ±0.02) increased significantly in RA patients as compared to control (8.12 ±1.14 and 0.308 ±0.01). Similar results were observed (11.98 ±1.18) with CRP levels in RA patients. The results of CBC indicated a significant reduction in hemoglobin (HB) levels (12.42 ±0.34) in RA patients, and there were no differences between other CBC parameters compared to healthy controls. These findings suggest that it is possible to use IL-3 and IL-5 as biomarkers for RA diagnosis.

Article Details

How to Cite
[1]
Salman, S.A. and AL-Jumaily, R.M.K. 2024. Immunological Role of IL-3, IL-5 and Some Inflammation Markers in a Sample of Iraqi Patients with Rheumatoid Arthritis. Ibn AL-Haitham Journal For Pure and Applied Sciences. 37, 4 (Oct. 2024), 45–51. DOI:https://doi.org/10.30526/37.3.3493.
Section
Biology

Publication Dates

Received

2023-05-14

Accepted

2023-06-19

Published Online First

2024-10-20

References

Wang, X.; Fan, D.; Cao, X.; Ye, Q.; Wang, Q.; Zhang, M.; Xiao, C. The role of reactive oxygen species in the rheumatoid arthritis-associated synovial microenvironment. Antioxidants 2022, 11, 1153. https://doi.org/10.3390/antiox11061153.

Farhat, H.; Irfan, H.; Muthiah, K.; Pallipamu, N.; Taheri, S.; Thiagaraj, S.S.; Shukla, T.S.; Gutlapalli, S.D.; Giva, S.; Penumetcha, S.S. Increased Risk of Cardiovascular Diseases in Rheumatoid Arthritis: A Systematic Review. Cureus 2022, 14(12), e32308. https://doi.org/10.7759/cureus.32308.

Smith, M.H. and Berman, J.R. What is rheumatoid arthritis? JAMA 2022, 327, 1194-1194. https://doi.org/10.1001/jama.2022.0786.

Fang, Q.; Zhou, C.; Nandakumar, K.S. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators of Inflammation 2020, 3830212. https://doi.org/10.1155/2020/3830212.

Littlejohn, E.A.; Monrad, S.U. Early diagnosis and treatment of rheumatoid arthritis. Primary Care: Clinics in Office Practice 2018, 45, 237-255. https://doi.org/10.1016/j.pop.2018.02.010.

Carpanen, D.; Kedgley, A.E.; Shah, D.S.; Edwards, D.S.; Plant, D.J.; Masouros, S.D. Injury risk of interphalangeal and metacarpophalangeal joints under impact loading. Journal of the Mechanical Behavior of Biomedical Materials 2019, 97, 306-311. https://doi.org/10.1016/j.jmbbm.2019.05.037.

Mo, Y.-Q.; Yang, Z.-H.; Wang, J.-W.; Li, Q.-H.; Du, X.-Y.; Huizinga, T.; Matthijssen, X.; Shi, G.-Z.; Shen, J.; Dai, L. The value of MRI examination on bilateral hands including proximal interphalangeal joints for disease assessment in patients with early rheumatoid arthritis: a cross-sectional cohort study. Arthritis Research & Therapy 2019, 21, 1-12. https://doi.org/10.1186/s13075-019-2061-1

Srivastava, R.K.; Tomar, G.B.; Barhanpurkar, A.P. IL-3 attenuates collagen-induced arthritis by modulating the development of Foxp3+ regulatory T cells. Journal of Immunology 2011, 186(4), 2262-2272. https://doi.org/10.4049/jimmunol.1002691.

Ihle, J.N. Interleukin-3 and hematopoiesis. Chemical immunology 1992, 51, 65-106. https://doi.org/10.1159/000420755.

Kawabata, H.; Satoh, M.; Yatera, K. Development of Rheumatoid Arthritis During Anti-Interleukin-5 Therapy in a Patient with Refractory Chronic Eosinophilic Pneumonia. Journal of Asthma Allergy 2021, 14, 1425-1430. https://doi.org/10.2147/jaa.s342993.

Hara, T.; Miyajima, A. Function and signal transduction mediated by the interleukin receptor system in hematopoiesis. Stem Cells 1996, 14, 605-618. https://doi.org/10.1002/stem.140605.

Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the pathophysiology of severe asthma. Frontiers in Physiology 2019, 10, 1514. https://doi.org/10.3389/fphys.2019.01514.

Diwan, Z. J.; Al-Marsomy, W.A. Evaluation of Several Hematologic and Serological Parameters in Rheumatoid Arthritis Patients. Ibn AL-Haitham Journal For Pure and Applied Sciences 2024, 37(2), 129-135. https://doi.org/10.30526/37.2.3451.

Orr, C.K.; Najm, A.; Young, F.; McGarry, T.; Biniecka, M.; Fearon, U.; Veale, D.J. The Utility and Limitations of CRP, ESR and DAS28-CRP in Appraising Disease Activity in Rheumatoid Arthritis. Front Medical (Lausanne) 2018, 5, 185. https://doi.org/10.3389/fmed.2018.00185.

Breda, L.; Nozzi, M.; De Sanctis, S.; Chiarelli, F. Laboratory tests in the diagnosis and follow-up of pediatric rheumatic diseases: an update. In Proceedings of the Seminars in Arthritis and Rheumatism, 2010, 53-72. https://doi.org/10.1016/j.semarthrit.2008.12.001.

Jonsson, M.K.; Sundlisæter, N.P.; Nordal, H.H.; Hammer, H.B.; Aga, A.-B.; Olsen, I.C.; Brokstad, K.A.; van der Heijde, D.; Kvien, T.K.; Fevang, B.-T.S. Calprotectin as a marker of inflammation in patients with early rheumatoid arthritis. Annals of the Rheumatic Diseases 2017, 76, 2031-2037. https://doi.org/10.1136/annrheumdis-2017-211695.

Shmerling, R.H. Testing for Anti–Cyclic Citrullinated Peptide Antibodies: Is It Time to Set This Genie Free? Archives of Internal Medicine 2009, 169, 9-14. https://doi.org/10.1001/archinternmed.2008.522.

Avouac, J.; Gossec, L.; Dougados, M. Diagnostic and predictive value of anti-cyclic citrullinated protein antibodies in rheumatoid arthritis: a systematic literature review. Annals of the Rheumatic Diseases 2006, 65, 845-851. https://doi.org/10.1136/ard.2006.051391.

Omran, R.H.; Ahmed, Z.A.; Alrawi, A.A. Evaluation of Some New Cytokines in Rheumatoid Arthritis. Journal of Faculty of Medicine Baghdad 2022, 64, 3. https://doi.org/10.32007/jfacmedbagdad.6431945.

Srivastava, R.K.; Tomar, G.B.; Barhanpurkar, A.P.; Gupta, N.; Pote, S.T.; Mishra, G.C.; Wani, M.R. IL-3 attenuates collagen-induced arthritis by modulating the development of Foxp3+ regulatory T cells. The Journal of Immunology 2011, 186, 2262-2272. https://doi.org/10.4049/jimmunol.1002691.

Kawabata, H.; Satoh, M. ; Yatera, K. Development of Rheumatoid Arthritis During Anti-Interleukin-5 Therapy in a Patient with Refractory Chronic Eosinophilic Pneumonia. Journal of Asthma and Allergy 2021, 1425-1430. https://doi.org/10.2147/JAA.S34299.

Mikhaylenko, D.S.; Nemtsova, M.V.; Bure, I.V.; Kuznetsova, E.B.; Alekseeva, E.A.; Tarasov, V.V.; Lukashev, A.N.; Beloukhova, M.I.; Deviatkin, A.A.; Zamyatnin, A.A. Jr. Genetic Polymorphisms Associated with Rheumatoid Arthritis Development and Antirheumatic Therapy Response. International Journal of Molecular Science 2020, 21(14), 4911. https://doi.org/10.3390/ijms21144911.

Brühl, H.; Cihak, J.; Niedermeier, M.; Denzel, A.; Gomez, M.R.; Talke, Y.; Goebel, N.; Plachý, J.; Stangassinger, M.; Mack, M. Important role of interleukin‐3 in the early phase of collagen‐induced arthritis. Arthritis & Rheumatism 2009, 60, 1352-1361. https://doi.org/10.1002/art.24441.

Fawzy, R.M.; Said, E.A.; Mansour, A.I. Association of neutrophil to lymphocyte ratio with disease activity indices and musculoskeletal ultrasound findings in recent onset rheumatoid arthritis patients. The Egyptian Rheumatologist 2017, 39, 203-206. http://dx.doi.org/10.1016/j.ejr.2017.05.001.

Wilson, A.; Yu, H.-T.; Goodnough, L.T.; Nissenson, A.R. Prevalence and outcomes of anemia in rheumatoid arthritis: a systematic review of the literature. The American Journal of Medicine 2004, 116, 50-57. https://doi.org/10.1016/j.amjmed.2003.12.012.

Yoshida Y, Tanaka T. Interleukin 6 and rheumatoid arthritis. Biomedical Research International 2014, 2014, 698313. https://doi.org/10.1155/2014/698313.

Avci, A.B.; Feist, E.; Burmester, G.R. Targeting IL-6 or IL-6 Receptor in Rheumatoid Arthritis: What Have We Learned?. BioDrugs, 2024, 38, 61–71. https://doi.org/10.1007/s40259-023-00634-1.

Wu, Y.; Chen, Y.; Yang, X.; Chen, L.; Yang, Y. Neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) were associated with disease activity in patients with systemic lupus erythematosus. International Immunopharmacology 2016, 36, 94-99. https://doi.org/10.1016/j.intimp.2016.04.006.

Pope, J.E.; Choy, E.H. C-reactive protein and implications in rheumatoid arthritis and associated comorbidities. Seminars in Arthritis and Rheumatism 2021, 51(1), 219-229. https://doi.org/10.1016/j.semarthrit.2020.11.005.

Peng, Y.-F.; Cao, L.; Zeng, Y.-H.; Zhang, Z.-X.; Chen, D.; Zhang, Q.; Zhu, Y.-S. Platelet to lymphocyte ratio and neutrophil to lymphocyte ratio in patients with rheumatoid arthritis. Open Medicine 2015, 10. https://doi.org/10.1515/med-2015-0037.

Nazar, L.A.; Al-Aati, E. A. Study of IL-33 and IL-1R4 in Iraqi Rheumatoid Arthritis Female Patient's with and without Dyslipidemia Prone to Atherosclerosis. Ibn AL-Haitham Journal For Pure and Applied Sciences 2019, 32(1), 48-56. https://doi.org/10.30526/32.1.1920.