Antibacterial Activity of Some Non-steroidal Anti-inflammatory Drugs against Proteus mirabilis
DOI:
https://doi.org/10.30526/37.4.3495Keywords:
NASIDs, Proteus mirabilis, multidrug resistance, antibacterialAbstract
In some recent investigations, non-steroidal anti-inflammatory drugs (NSAIDs) and paracetamol demonstrated antibacterial action. This study aimed to evaluate the inhibitory effects of diclofenac, piroxicam, and paracetamol against multidrug-resistant Proteus mirabilis. The sensitivity of Proteus spp. was tested for nine antibiotics representing seven different families using an agar diffusion test. The isolates with multiple antibiotic resistances were selected to test the effect of NSAIDs and paracetamol on growth using a resazurin-based microplate broth dilution assay. The findings of the agar diffusion test revealed the highest level of antibiotic resistance for Proteus isolates was recorded against ceftazidime with a percentage of (91.53%) followed by amoxicillin-clavulanate and cefixime (81.36%) and (76.27%), respectively. The isolates were resistant to azithromycin at a rate of (69.49%). Furthermore, moderate resistance was observed among the isolates to levofloxacin (66.10%), gentamicin (55.93%), and aztreonam (47.46%). While the lowest resistance was reported (18.64%) against piperacillin-tazobactam and (8.47%) against imipenem, Imipenem had the greatest antibacterial activity (88%); also, NSAIDs showed distinct antibacterial activity against Proteus mirabilis in (2500, 5000 μg/ml) and above concentrations for piroxicam and diclofenac, respectively. Paracetamol failed to show antibacterial activity against Proteus mirabilis
References
Girlich, D.; Bonnin, R.A.; Dortet, L.; Naas, T. Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. Frontiers in Microbiology 2020, 11, 256. https://doi.org/10.3389/fmicb.2020.00256.
Drzewiecka, D.; Palusiak, A.; Siwińska, M.; Zabłotni, A. The prevailing O serogroups among the serologically differentiated clinical Proteus spp. strains in central Poland. Scientific Reports 2021, 11(1), 18982. https://doi.org/10.1038/s41598-021-98228-w.
Shelenkov, A.; Petrova, L.; Fomina, V.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020, 8(11), 1775.: https://doi.org/10.3390/microorganisms8111775.
Drzewiecka, D. Significance and Roles of Proteus spp. Bacteria in Natural Environments. Microbial Ecology 2016, 72(4), 741–758. https://doi.org/10.1007/s00248-015-0720-6.
Li, Y.; Liu, Q.; Qiu, Y.; Fang, C.; Zhou, Y.; She, J.; Chen, H.; Dai, X.; Zhang, L. Genomic characteristics of clinical multidrug-resistant Proteus isolates from a tertiary care hospital in southwest China. Frontiers in Microbiology 2022, 13, 977356. https://doi.org/10.3389/fmicb.2022.977356.
Paes Leme, R.C.; da Silva, R.B. Antimicrobial Activity of Non-steroidal Anti-inflammatory Drugs on Biofilm: Current Evidence and Potential for Drug Repurposing. Frontiers in Microbiology 2021, 12, 707629. https://doi.org/10.3389/fmicb.2021.707629.
Chan, E.W.L.; Yee, Z.Y.; Raja, I.; Yap, J.K.Y. Synergistic effect of non-steroidal anti-inflammatory drugs (NSAIDs) on antibacterial activity of cefuroxime and chloramphenicol against methicillin-resistant Staphylococcus aureus. Journal of Global Antimicrobial Resistance 2017, 10, 70–74. https://doi.org/10.1016/j.jgar.2017.03.012.
Rodrigues, A.; Gomes, A.; Marçal, P.H.F.; Dias-Souza, M.V. Dexamethasone abrogates the antimicrobial and antibiofilm activities of different drugs against clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Advanced Research 2017, 8(1), 55–61. https://doi.org/10.1016/j.jare.2016.12.001.
Tabatabaeifar, F.; Isaei, E.; Kalantar-Neyestanaki, D.; Morones-Ramírez, J.R. Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs—Common Antibiotics against Pathogenic Bacteria. Pharmaceutics 2022, 15(1), 4. https://doi.org/10.3390/pharmaceutics15010004.
Goel, A.; Verma. K.; Mittal, D.; Shadija, L.; Singh, N. To Assess the Antimicrobial Action of Paracetamol. Acta Scientific Microbiology 2020, 3(8), 65-70. https://actascientific.com/ASMI/pdf/ASMI-03-0655.pdf.
Teh, C. H.; Nazni, W. A.; Nurulhusna, A. H.; Norazah, A.; Lee, H. L. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiology 2017, 17(1), 1-8. https://doi.org/10.1186/s12866-017-0936-3.
CLSI. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; approved standard 33rd ed. CLSI document M100, 2023.
Magiorakos, A.P.; Srinivasan, A.; Carey, R. B.; Carmeli, Y.; Falagas, M.E.; Giske, C. G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson- Liljequist, B.; Paterson, D. L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet; D.L. Multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria. An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection 2012, 18(3), 268-281.https://doi.org/10.1111/j.1469-0691.2011.03570.x.
Patricia, M.T. Bailey and Scott`s Diagnostic Microbiology; 15th ed. Mosby, Inc.; an affiliate of Elsevier Inc. 2021, ISBN: 978-0-323-68105-6.
Alabdeen, Z.; Ahmed, B.H. Effect of Pomegranate Peel Extract on the Production of Some Enzymes in Proteus spp. Isolated from Different Clinical Samples in Kirkuk City. Kirkuk University Journal Scientific Studies 2021, 16(3), 1-11. https://doi.org/10.32894/KUJSS.2021.169993.
Jannat, H.; Shamsuzzaman, S.M.; Faisal, M.A. Emergence of OXA-833 in Proteus species at a tertiary care hospital in Dhaka, Bangladesh. International Journal of Applied and Basic Medical Research 2021, 11(4), 258-262. https://doi.org/10.4103/ijabmr.ijabmr_153_21.
Abdulrazaq, A.H.; Aziz, L. M.; Muhaidi, M.J.; Lateef, A. N. Microorganism Distribution that Causes Abortion in Females of Fallujah City. Medico-Legal Update 2020, 20(2), 485-491. https://doi.org/10.37506/mlu.v20i2.1152.
Abdullah, P.B.; Khalid, H.M.; Mero, W.M. Molecular characterization and antibiotic susceptibility of Proteus mirabilis isolated from different clinical specimens in Zakho city, Kurdistan Region, Iraq. Zanco Journal of Pure and Applied Sciences 2022, 34(5), 198-207. https://doi.org/10.21271/ZJPAS.34.5.18.
Bahashwan, S.A.; El Shafey, H.M. Antimicrobial resistance patterns of Proteus isolate from clinical specimens. European Scientific Journal 2013, 9(27). https://doi.org/10.19044/esj.2013.v9n27p%25p.
Facciolà, A.; Gioffrè, M.E.; Chiera, D.; Ferlazzo, M.; Virga, A.; Laganà, P. Evaluation of antibiotic resistance in Proteus sp. A growing trend that worries Public Health. Results of 10 Years of Analysis. New Microbiologica 2022, 45(4),269-277. https://pubmed.ncbi.nlm.nih.gov/36190369/.
Abdul-Sada, I. A. Prevalence of Plasmid Mediated Quinolones Resistance (PMQR) Genes in Proteus Species Isolated from Patients Associated with Urinary Tract Infection in Al-Najaf Alashraf Hospital. PhD. Thesis, University of Kufa, Iraq, 2019.
Kamil, T.D.; Jarjes, S.F. Isolation, Identification, and Antibiotics Susceptibility Determination of Proteus Species Obtained from Various Clinical Specimens in Erbil City. Polytechnic Journal 2019, 9(2), 86-92. https://doi.org/10.25156/ptj.v9n2y2019.pp86-92.
Majumder, M.M.I.; Ahmed, T.; Ahmed, S.; Khan, A.R. Microbiology of catheter-associated urinary tract infection. Microbiology of Urinary Tract Infections-Microbial Agents and Predisposing Factors, 2018. https://doi.org/10.5772/intechopen.80080.
Jabbar, A.H.; Kadhim, M.I.; Jabbar, M.H. Antibiotics resistance profile of bacterial strains produced of biofilm isolated from patients in Al-Diwaniya city, Iraq. International Journal of Engineering Applied Sciences and Technology 2019, 4(8), 295-299. https://doi.org/10.1088/1742-6596/1664/1/012123.
Zafar, U.; Taj, M. K.; Nawaz, I.; Zafar, A.; Taj, I. Characterization of Proteus mirabilis isolated from patient wounds at Bolan Medical Complex Hospital, Quetta. Jundishapur Journal of Microbiology 2019, 12(7), e87963. https://doi.org/10.5812/jjm.87963.
Girlich, D.; Bonnin, R. A.; Dortet, L.; Naas, T. Genetics of acquired antibiotic resistance genes in Proteus spp. Frontiers in Microbiology 2020, 11, 256. https://doi.org/10.3389/fmicb.2020.00256.
Al-Rawi, H.S. Immunological study of outer membrane proteins of multidrug-resistant- Proteus mirabilis isolated from urinary tract infection. MSc. Thesis 2022.
Lin, M.F.; Liou, M.L.; Kuo, C.H.; Lin, Y.Y.; Chen, J.Y.; Kuo, H.Y. Antimicrobial susceptibility and molecular epidemiology of Proteus mirabilis isolate from three hospitals in Northern Taiwan. Microbial Drug Resistance 2019, 25(9), 1338–1346. https://doi.org/10.1089/mdr.2019.0066.
AL-Dulaimy, I.M.; Saleem, A.J.; Al-Taai, H.R.R. Detection of flaA, fliC, mrpA and rsbA Gene in proteus mirabilis Multidrug Resistance Isolated from Different Clinical Sources in Baquba City. The Egyptian Journal of Hospital Medicine 2023, 90(2), 2831-2838. https://doi.org/10.21608/EJHM.2023.287337.
Muslem, R.E.; Raheema, R.H.; Yasir, Q.D. Molecular Detection of Plasmid-Mediated AmpC in Gram-Negative Bacteria Isolated from Intensive Care Unit Patients in Wasit Province, Iraq. The Egyptian Journal of Hospital Medicine 2022, 89(2), 6488-6495. https://doi.org/10.21608/EJHM.2022.270291
Majeed, H.T.; Aljanaby, A.A.J. Antibiotic susceptibility patterns and prevalence of some extended-spectrum beta-lactamases genes in gram-negative bacteria isolated from patients infected with urinary tract infections in Al-Najaf City, Iraq. Avicenna Journal of Medical Biotechnology 2019, 11(2), 192-201.
Al-Hamdani, H.; Al-Hashimy, A. Molecular detection of UREC, HPMA, RSBA AND MRPA genes of Proteus Mirabilis urinary tract infection in patients with rheumatoid arthritis. The Iraqi Journal of Agricultural Science 2020, 51, 245-251. https://doi.org/10.36103/ijas.v51iSpecial.902
French, C.E.; Coope, C.; Conway, L.; Higgins, J.P.T.; McCulloch, J.; Okoli, G.; Patel, B.C.; Oliver, I. Control of carbapenemase-producing Enterobacteriaceae outbreaks in acute settings: an evidence review. Journal of Hospital Infection 2017, 95(1), 3-45. https://doi.org/10.1016/j.jhin.2016.10.006
Codjoe, F.S.; Donkor, E.S.; Carbapenem resistance: a review. Medical sciences (Basel, Switzerland) 2017, 6(1), 1. https://doi.org/10.3390/medsci6010001
Girlich D.; Bonnin R.A.; Bogaerts P.; De Laveleye M.; Huang D.T.; Dortet, L.; Glaser, P.; Glupczynski, Y.; Naas, T. Chromosomal amplification of the blaOXA-58 carbapenemase gene in a Proteus mirabilis clinical isolate. Antimicrobial Agents Chemotherapy 2017, 61(2), e01697-16. https://doi.org/10.1128/AAC.01697-16
Konate, A.; He, X.; Zhang, Z.; Ma, Y.; Zhang, P.; Alugongo, G.M.; Rui, Y. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 2017, 9(5), 790. https://doi.org/10.3390/su9050790
World Health Organization. Neglected tropical diseases and one health: gearing up against antimicrobial resistance to secure the safety of future generations: meeting report, 24 November 2020. 2021.
Singh, B.R.; Pruthvishree, B.S.; Yadav, A.; Karthikeyan, R.; Vinodhkumar, O.R.; Sinha, D. K. Comparative Antimicrobial Activity of Aspirin, Paracetamol, Flunixin Meglumine, Tolfenamic Acid, Diclofenac Sodium and Pheniramine Maleate. Acta Scientific Veterinary Sciences 2021, 3(9), 30-42. https://www.researchgate.net/publication/353452879
Leão, C.; Borges, A.; Simões, M. NSAIDs as a drug repurposing strategy for biofilm control. Antibiotics 2020, 9(9), 591. https://doi.org/10.3390/antibiotics9090591.
Nakka, M.; Nallapati, S.B.; Reddy, L.V.; Murakkant, K.; Pal, S. Synthesis characterization and anti-bacterial screening of piroxicam-based sulfonates. Journal of Chemical and Pharmaceutical Research 2011, 3(2), 581-588.
Oliveira, I.M.; Borges, A.; Borges, F.; Simões, M. Repurposing ibuprofen to control Staphylococcus aureus biofilms. European Journal of Medicinal Chemistry 2019, 166, 197-205. https://doi.org/10.1016/j.ejmech.2019.01.046.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms