Some Results on Double Cenralizer for Prime and Semiprime Г- rings

Authors

DOI:

https://doi.org/10.30526/38.2.3594

Keywords:

Keywords: Prime Г- rings , Semiprime Г- rings, centralizer, Jordan centralizer, double centralizer, double Jordan centralizer.

Abstract

    

        The goal of this work, is to examine the concept of a double centralizer, and double Jordan centralizer on prime and semiprime Г-rings, this is done by studying examples, remarks and results related to that concepts and looking for the conditions under which T equal S, we prove the results, the first result, let A be a semiprime Γ-ring and T is a left centralizer, S is a right centralizer, and they fulfilling x  T(y) = S (x)  y,  for each x  A,    Γ, thence (T,S) is a double centralizer. The second, let A be a prime Γ-ring, U be a not equal zero ideal of A, such that, T is a left centralizer, S is a right centralizer, and fulfilling x T(y) = S (x)  y, for each x, y  U,    Γ, thence (T, S) is a double centralizer. The third, let A be a prime Γ-ring, U be a non-zero ideal of A, and we get , if T=S on U, thence T=S on A.

Author Biographies

  • Aya Hussein, Department of Mathematics, College, of Science, University of Baghdad, Baghdad, Iraq

    .

  • Abdulahman H. Majeed , Department of Mathematic, Al-Mamoun University College, Baghdad, Iraq

    .

  • Shrooq Bahjat Smeein , Department of Mathematics, An-Najah National University, Nablus P400, Palestine.

    .

  • Azza I.M.S. Abu-Shams , Information Department -Section Mathematics, University of Technology and Applied Science - Muscat, Sultanate of Oman.

    .

References

1. Barnes WE. On the Г-rings of Nobusawa. Pacific J Math. 1966;18:411-422.

2. Özden D, Öztürk MA, Jun YB. Permuting tri-derivations in prime and semi-prime gamma rings. Kyungpook Math J. 2006; 46(2):153-167.

3. Kandamar H, Arslan O. On the commutativity conditions for rings and Γ-rings. Hacettepe J Math Stat. 2020;49(5):1660-1666.

4. Kamali Ardakani L, Davvaz B, Huang S. On Derivations of Prime and Semiprime Gamma Rings. Bol Soc Paran Mat. 2019;37(2):157-166.

5. Kyuno S. Prime ideals in gamma rings. Pacific J Math. 1982;98(2):375-379.

6. Chakraborty S, Paul AC. On Jordan K-derivations of 2-torsion free Prime Гn-rings. Punjab Univ J Math. 2008;40:97-101.

7. Marapureddy, M. K. R. On Γ-semiring with identity. Discussiones Mathematicae-General Algebra and Applications, 2017; 37(2), 189-207.‏ http://dx.doi.org/10.7151/dmgaa.1276.

8. Özkum G, Soytürk M. Gamma Rings With Derivation. Eur Int J Sci Technol. 2021;10(7):125-138.

9. Saleh SM. On prime Г-rings with derivation. PhD Thesis. Al-Mustansiry University; 2010.

10. Shaheen RC. On Higher Homomorphism of Completely Prime Gamma Rings. J Al-Qadisiyah Pure Sci. 2008;13(2):1-9.

11. Motashar SK, Majeed AH. Г-Centralizing Mappings of Semiprime Г-Rings. Iraqi J Sci. 2012;53(3):657-662.

12. Mutlak AT, Majeed AH. On Centralizers of 2-torsion Free Semiprime Gamma Rings. Iraqi J Sci. 2021;(7):2351-2356.

13. Majeed AH, Hamil SA. -Orthogonal for K-Derivations and K-Reverse Derivations. J Phys. 2020;1530:1-6.

14. Majeed AH, Hamil SA. Derivations in Gamma Rings with γ-Lie and γ-Jordan Structures. J Phys Conf Ser. 2020;1530:012049. http://doi.org/10.1088/1742-6596/1530/1/012049

15. Majeed AH, Hamil SA. Derivations and reverse derivations on γ-prime and γ-semiprime gamma semirings. J Phys Conf Ser. 2020;1530:012050. http://doi.org/10.1088/1742-6596/1530/1/012050

16. Majeed AH, Hamil SA. On commutativity of prime and semiprime gamma rings with reverse derivations. Iraqi J Sci. 2019;60(7):1546-1550.

17. Chakraborty S, Rashid MM, Paul AC. Inner derivations on semiprime gamma rings. Ganit J Bangladesh Math Soc. 2019;39:101-110.

18. Kadhim AK, Sulaiman H, Majeed ARH. Г-centralizer and Reverse Г*-centralizers on Semiprime Г-ring with Involution. Int Math Forum. 2015;10(8):385-393.

19. Hoque MF, Paul AC. On centralizers of semiprime Gamma rings. Int Math Forum. 2011;6(13):627-638.

20. Ibraheem RK, Majeed AH. On Lie Structure in semi-prime inverse semi-rings. Iraqi J Sci. 2019;60(12):2711-2718. http://doi.org/10.24996/ijs.2019.60.12.21

21. Dimitrov S. Derivations on semirings. AIP Conf Proc. 2017;1910:060011. http://doi.org/10.1063/1.5014005

22. Golan JS. Semirings and their applications. University of Haifa, Haifa, Palestine; 1992.

23. Golan JS. The theory of Semirings with Applications Mathematics and Theoretical Computer Science. John Wiley and Sons, New York; 1992.

24. Golan JS. Semirings and their applications. University of Haifa, Haifa, Palestine; 1992.

25. Joseph HM. Centralizing mapping of prime rings. Can Math Bull. 1984;27(1):122-126. http://doi.org/10.4153/CMB-1984-018-2

26. Mary D, Murugensan R, Namasivayam P. Centralizers on Semiprime Semirings. IOSR J Math. 2016;12(3):86-93.

27. Sara A, Aslam M. On Li Ideal of Inverse Semirings. Ital J Pure Appl Math. 2020;44:22-29.

28. Sultana KA. Some Structural Properties of Semirings. Ann Pure Appl Math. 2014;5(2):158-167.

29. Ibrahim RK. On additive mappings of inverse semirings. MSc Thesis. University of Baghdad, College of Science; 2019.

30. Zaghir KAD, Majeed AH. (α, β)-Derivations on ideals in prime inverse semi-rings. AIP Conf Proc. 2023;40(1):4031-4110. http://doi.org/10.1063/5.0117578

Downloads

Published

20-Apr-2025

Issue

Section

Mathematics

How to Cite

[1]
Hussein, A. et al. 2025. Some Results on Double Cenralizer for Prime and Semiprime Г- rings . Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 2 (Apr. 2025), 330–337. DOI:https://doi.org/10.30526/38.2.3594.