The Effect of Annealing Process on Surface Plasmon Resonances in Tungsten Trioxide Films
DOI:
https://doi.org/10.30526/37.4.3627Keywords:
Structural, optical properties, surface plasmon resonances, WO3 thin films.Abstract
In this study, after pyrolyzing the prepared solution, we made films from transitional tungsten oxide metal doped with gold nanoparticles and deposited them using a spray deposition technique on glass substrates at a substrate temperature of 320°C. We then annealed the prepared films at various temperatures (673,773 K) for one hour, in which we detected the band of localized surface plasmon resonance (LSPR) in gold-doped tungsten oxide films around the wavelength of 595 nm, and thermal treatment increased its intensity to near the wavelength of 580 nm. The produced and annealed thin films also demonstrated an indirect energy gap smaller than (2.86-2.61) eV in the UV-visible spectrum. The structural characteristics of the manufactured and annealed thin films reveal an amorphous structure at the substrate temperature of 320°C, but a polycrystalline structure at the annealing temperature, where researchers discovered monoclinic tungsten trioxide structures. (AFM), which achieved the maximum particle size of 75.93 nm after it was 47.85 nm, allowing researchers to see that the thin film of all the samples has a nanostructure.
References
Kadam, P.M. Enhanced optical modulation due to SPR in gold nanoparticles embedded WO3 thin films. Journal of Alloys and Compounds 2011, 509(5), 1729–1733. https://doi:10.1016/j.jallcom.2010.10.024
Charles, C.; Martin, N.; Devel, M.; Ollitrault, J. Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films 2013, 534, 275–281. https://doi.org/10.1016/j.tsf.2013.03.004
Figueiredo, N.M.; Vaz, F.; Cunha, L.; Cavaleiro, A. Au-WO3 nanocomposite coatings for localized surface plasmon resonance sensing. Materials 2020, 13(1), 246-450. https://doi:10.3390/ma13010246
Keshri, S.; Kumar, A.; Kabiraj, D. Effect of Annealing on Structural, Optical and Electrical Behaviors of WO3 Thin Films Prepared by Physical Vapour Deposition Method. Journal of Nano-and Electronic Physics 2011, 3(1), 260-266.
Hutchins, M.G.; Abu-Alkhair, O.; El-Nahass, M.M.; Abdel-Hady, K. Electrical conduction mechanisms in thermally evaporated tungsten trioxide (WO3) thin films. Journal of Physics: Condensed Matter 2006, 18(44), 9987. https://doi:10.1088/0953-8984/18/44/401
Mohammed, F.A.; Salim, E.T.; Hassan, A.I.; Wahid, M.H. Effect of precursor concentration on the structural, optical, and electrical properties of WO3 thin films prepared by spray pyrolysis. Journal of Applied Sciences and Nanotechnology 2022, 2(4), 91–105. https://doi:10. 53293/jasn.2022.4715.1139
Shuihab, A.; Khalf, S. Fabrication and characterization of nickel oxide nanoparticles /silicon NiO NPS/Si. in AIP Conference Proceedings, AIP Publishing 2018, 11, 2224. https://doi. org/10.1063/1.5039185
Ali, L.S.; Shehab, A.A.; Abd, A.N. Preparation and characterization of p-NiO: Li thin films as Schottky photodiode. in Journal of Physics: Conference Series, IOP Publishing 2019, 22, 012050. https://doi:10.1088/1742-6596/1234/1/012050
Madhukar, P.; Jayababu, N.; Ramana, R.; Shanmukhi, J. Study of structural, morphological and electrical properties of WO3 thin films by e-beam technique. Journal of Pure Applied and Industrial Physics 2017, 7(11), 405–413. https://doi:10.29055/128/jpaip/2934
Feng Y. Fabrication of WO3 photoanode on crystalline Si solar cell for water splitting. J Mater Sci: Mater Electron 2020, 31(17), 14137–14144, https://doi:10.1007/s10854-020-03968-6
Bertus, L.M.; Enesca, A.; Duta, A. Influence of spray pyrolysis deposition parameters on the optoelectronic properties of WO3 thin films. Thin Solid Films 2012, 520(13), 4282–4290. https://doi:10.1016/j.tsf.2012.02.052
De León, J.R.; Acosta, D.R.; Pal, U.; Castaneda, L. Improving electrochromic behavior of spray pyrolised WO3 thin solid films by Mo doping. Electrochimica Acta 2011, 56(5), 2599–2605. https://doi:10.1016/j.electacta.2010.11.038
Simchi, H.; McCandless, B.E.; Meng, T.; Shafarman, W.N. Structural, optical, and surface properties of WO3 thin films for solar cells. Journal of Alloys and Compounds 2014, 617, 609–615, https://doi:10.1016/j.jallcom.2014.08.047
Gullapalli, S.K.; Vemuri, R.S.; Ramana, C.V. Structural transformation induced changes in the optical properties of nanocrystalline tungsten oxide thin films. Applied Physics Letters 2010, 96(17), 11-24. https://doi:10.1063/1.3421230
Bertus L.M. Synthesis and characterization of WO3 thin films by surfactant-assisted spray pyrolysis for electrochromic applications. Materials chemistry and physics 2013, 140(1), 49–59. http://doi.org/10.1016/j.matchemphys.2013.02.047
Amri A. Surface structural features and optical analysis of nanostructured Cu-oxide thin film coatings coated via the sol-gel dip coating method, Ceramics International 2019, 45(10), 12888–12894, https://doi:10.1016/j.ceramint.2019.03.213
Salim, E.T.; Hassan, A.I.; Mohamed, F.A.; Wahid, M.H.; Fakhri, M.A. A sight of view on electrical impacts, structural properties and surface roughness of tungsten trioxide thin film: effect of substrate temperatures in WO3/Si device fabrication. Physica Scripta. 2023, 98(3), 035508, https://doi:10.1088/1402-4896/acb8ea
Arifuzzaman, M. Investigation of silver doping on structural, optical and electrical properties of spray deposited tungsten trioxide thin films. 2021, 11, 213. http://doi:8080/xmlui/handle /123456789/5967
Mustafa M.H.; Shihab, A.A. Influence of heat treatment on the efficiency of WO3: Au NPs optoelectronic device prepared by spray pyrolysis technique. Journal of Theoretical and Applied Physics (JTAP) 2024, 11, 224. https://doi:10.57647/j.jtap.2024.si-AICIS23.07
Naseri, N.; Azimirad, R.; Akhavan, O.; Moshfegh, A.Z. Improved electrochromic properties of sol-gel WO3 thin films by doping gold nanocrystals. Thin Solid Films 2010, 518(8), 2250–2257. https://DOI:10.1016/j.tsf.2009.08.001
Mustafa, M.H.; Shihab, A.A. Effect of ratio gold nanoparticles on the properties and efficiency photovoltaic of thin films of amorphous tungsten trioxide. Journal of Ovonic Research 2023, 19(6), 23-34. https://DOI:10.15251/JOR.2023.196.623
Gregory, N.W. Elements of X-Ray Diffraction. J. Am. Chem. Soc. 1957, 79(7), 1773–1774. https://doi:10.1021/ja01564a077
Yousif A.; Khudadad, A.I. Effects of annealing process on the WO3 thin films prepared by pulsed laser deposition. in IOP Conference Series: Materials Science and Engineering, IOP Publishing 2020, 11, 012064. https://doi:10.1088/1757-899X/745/1/012064
Xu, C. Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films. Chinese Physics Letters 2012. 29(8), 084207, https://doi.org/10.1088/0256-307X/29/8/084207
Sabhapathi V.K. Optical absorption studies in molybdenum trioxide thin films. Phys. Stat. Sol. (a) 1995, 148(1),167–173. https://doi:10.1007/BF02745144
Pankove, J.I. Optical processes in semiconductors. Courier Corporation 1975, 23, 341-348.
Joraid A.; Alamri, S.N. Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating. Physica B: Condensed Matter 2007, 391(2), 199–205. https://DOI:10.1016/j.physb.2006.09.010
Saeed, M.H.; Al-Timimi, M.H.; Hussein, O.A. Structural, morphological and optical characterization of nanocrystalline WO3 thin films. Digest Journal of Nanomaterials and Biostructures 2021, 16(2), 563–569, https://doi:10.15251/DJNB.2021.162.563
Louis C.; Pluchery, O. Gold Nanoparticles for Physics, Chemistry and Biology (Second Edition) 2017, 12, 23-35.
Kreibig U.; Vollmer, M. Optical properties of metal clusters. Springer Science & Business Media 2013, 25, 224-234.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ibn AL-Haitham Journal For Pure and Applied Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms