Influence of Type of Culture Media and Light Colors on Biomass and Harvesting Time of Green Algae (Chlorococcum humicola)

Authors

DOI:

https://doi.org/10.30526/38.4.3763

Keywords:

Microalgae, Green algae, Chlorococcum humicola, BG11 media, Chu13 media, Growth rate, Harvesting time, Light colors

Abstract

The current study aimed to determine the effect of exposure to different colors of light and culture media with different concentrations of nutrients on growth curves, growth rates, doubling times of Chlorococcum humicola and different harvest times. The studied algae were grown in two different media, Chu13 and BG11 for comparison purpose with the effect of three colors of white, blue, and red lights. White light was adopted as a control factor. The harvest was carried out after the days (7, 14, 21, 28, 35) days of development to determine the highest growth rate in the shortest time during five weeks and therefore to determine the best harvest time in producing the highest growth rates and growth curves and the lowest doubling time during the experiment period of 35 days by the effect of different treatments and at a temperature of (2±25)°C and a light intensity of 3000 lux and a light system of 8/16 hours of light / darkness by conducting daily measurements by reading the absorption values and calculating the number of cells for each culture medium in each light color. The results of the study showed that the highest growth rate and the least doubling time depending on the values of absorption and the number of cells was recorded in the medium BG11 when exposed to blue light at harvest on the seventh day of the experiment. The results recorded the highest growth rate based on absorbance values and cell numbers on the seventh day of the experiment in BG11 medium with the effect of blue light.

Author Biographies

  • Aya A.N. Al-temimi, Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

  • Thaer M. I. Al-Akailly, Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Biology, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

References

1. Valverde F, Romero-Campero FJ, León R, Guerrero MG, Serrano A. New challenges in microalgae biotechnology. Eur J Protistol. 2016;55:95–101. https://doi.org/10.1016/j.ejop.2016.03.002.

2. Mobin S, Alam F. Some promising microalgal species for commercial applications: a review. Energy Procedia. 2017;110:510–517. https://doi.org/10.1016/j.egypro.2017.03.177.

3. Arguelles ED, Laurena AC, Monsalud RG, Martinez Goss MR. Fatty acid profile and fuel-derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I AU1). J Appl Phycol. 2018;30:411–419. https://doi.org/10.1007/s10811-017-1264-6.

4. Salman JM, Majrashi N, Hassan FM, Al Sabri A, Jabar EAA, Ameen F. Cultivation of blue green algae (Arthrospira platensis Gomont, 1892) in wastewater for biodiesel production. Chemosphere. 2023;139107:… https://doi.org/10.1016/j.chemosphere.2023.139107.

5. Mobin S, Alam F. Some Promising Microalgal Species for Commercial Applications: A Review. Energy Procedia. 2017;110:510–517. https://doi.org/10.1016/j.egypro.2017.03.177 .

6. Aziz FH, Hassan FM, Rasul BH. An ecological observation on inland water ecosystem in Erbil Iraq Kurdistan with particular reference to blue green algae Glaucospira. Baghdad Sci J. 2014;11(3):1387–1396. https://doi.org/10.21123/bsj.2014.11.3.1387-1396.

7. Al-Rubaie G, Al-Shammari RHH. Microalgae Chlorella vulgaris harvesting via co-pelletization with filamentous fungus. Baghdad Sci J. 2018;15(1):31–36. https://doi.org/10.21123/bsj.2018.15.1.0031.

8. Hassan FM, Al-Jbory IF, Kassim TI. An attempt to stimulate lipids for biodiesel production from locally isolated microalgae in Iraq. Baghdad Sci J. 2013;10(1):97–108. https://doi.org/10.21123/bsj.2013.10.1.97-108.

9. Dwaish AS, Yousif DYM, Alwan AH, Lefta SN. Anti-dermatophytes activity of macroalgal extracts (Chara vulgaris) isolated from Baghdad city, Iraq. J Glob Pharm Technol. 2018;11(12):5449–5454. http://dx.doi.org/10.5958/0974-360X.2018.00993.9.

10. Ansari FA, Shekh AY, Gupta SK, Bux F. Microalgae for biofuels: applications, process constraints and future needs. In: Algal Biofuels: Recent Advances and Future Prospects. 2017;57–76. https://doi.org/10.1007/978-3-319-51010-1_3.

11. Al Maliki ZNA, Al Magdamy BAH. Effect of the Effectiveness of Chlorococcum humicola algae extracts against some Gramineae fungi. Biochem Cell Arch. 2022;22:665–671. https://connectjournals.com/03896.2022.22.665.

12. Amaro HMA, Guedes C, Malcata FX. Advances and perspectives in using microalgae to produce biodiesel. Appl Energy. 2011;88:3402–3410. https://doi.org/10.1016/j.apenergy.2011.04.032.

13. Chu SP. The influence of the mineral composition of the medium on the growth of planktonic algae: part I. Methods and culture media. J Ecol. 1942;30:284–325.

14. Praba T, Ajan C, Citarasu T, Albindhas S, Gopal P, Michael Babu M. Effect of different culture media for the growth and oil yield in selected marine microalgae. J Aquac Trop. 2016;31:165–177.

15. Wiesnner W. Inorganic micronutrients. In: Lewin RA, editor. Physiology and biochemistry of algae. New York: Academic Press; 1962. pp. 267–286.

16. Mandalam RK, Palsson B. Elemental balancing of biomass and medium composition enhances growth capacity in high density Chlorella vulgaris cultures. Biotechnol Bioeng. 1998;59(5):605–611. https://doi.org/10.1002/(SICI)1097 0290(19980905)59:5<605::AID BIT11>3.0.CO;2 8.

17. Salman JM, Grmasha RA, Stenger Kovács C, Lengyel E, Al Sareji OJ, Al Cheban AMA, Meiczinger M. Influence of magnesium concentrations on the biomass and biochemical variations in the freshwater algae, Chlorella vulgaris. Heliyon. 2023;9(1):e13072. https://doi.org/10.1016/j.heliyon.2023.e13072.

18. Hanifzadeh M, Garcia EC, Viamajala S. Production of lipid and carbohydrate from microalgae without compromising biomass productivities: Role of Ca and Mg. Renewable Energy. 2018;127:989–997. https://doi.org/10.1016/j.renene.2018.05.012.

19. Polat E, Yüksel E, Altınbaş M. Mutual effect of sodium and magnesium on the cultivation of microalgae Auxenochlorella protothecoides. Biomass Bioenerg. 2020;132:105441. https://doi.org/10.1016/j.biombioe.2019.105441.

20. Finkle JB, Appleman D. The effect of magnesium concentration on growth of Chlorella. Plant Physiol. 1952;27:664–673.

21. Fogg GE, Thake B. Algae Cultures and Phytoplankton Ecology. London: The University of Wisconsin Press; 1987. p.1–58.

22. Ernst A, Deicher M, Herman PM, Wollenzien UTA. Nitrate and phosphate affect cultivability of cyanobacteria from environment with low nutrient levels. Appl Environ Microbiol. 2005;71(6):3379–83. https://doi.org/10.1128/AEM.71.6.3379-3383.2005.

23. Al Salman IMA, Al Ukaily TIM. The effect of nitrogen and sodium chloride stress in the productivity of some fatty acids in Chlorococcum humicola green alga. Baghdad Sci J. 2016;13(4):663–673. https://doi.org/10.21123/bsj.2016.13.4.0663.

24. Sharma R, Singh GP, Sharma VK. Comparison of different media formulations on growth, morphology and chlorophyll content of green algae, Chlorella vulgaris. Internat J Pharma Bio Sci. 2011;2(2):509–516.

25. Mata T, Almida R, Caetano N. Effect of the culture nutrient on biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem Eng Trans. 2013;32:19–24. https://doi.org/10.3303/CET1332163.

26. Chu SP. The influence of the mineral composition of the medium on the growth of planktonic algae: Part I. Methods and culture media. J Ecol. 1942;30:284–325.

27. Taylor R, Fletcher RL, Raven JA. Preliminary studies on the growth of selected ‘green tide’ algae in laboratory culture: Effects of irradiance, temperature, salinity and nutrients on growth rate. In: Lewin RA, editor. Physiology and Biochemistry of Algae. De Gruyter; 2001. p. 327–336.

28. Affan A, Karawita R, Jeon YJ, Lee JB. Growth characteristics and antioxidant properties of the benthic diatom Navicula incerta (Bacillariophyceae) from Jeju Island, Korea. J Phycol. 2007;43:823–832.

29. Converti A, Casazza AA, Ortiz EY, Perego P, DelBorghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process. 2009;48:1146–1151. https://doi.org/10.4319/lo.2008.53.5.1790.

30. Ji Y, Sherrell RM. Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr. 2008;53:1790–1804.

31. Liang Y, Sarkany N, Cui Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett. 2009;31:1043–1049. https://doi.org/10.1007/s10529-009-9975-7.

32. Raghavan G, Haridevi C, Gopinathan C. Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquac Res. 2008;39:1053–1058. https://doi.org/10.1111/j.1365-2109.2008.01964.x.

33. Banerjee S, Hew W, Khatoon H, Shariff M, Yusoff FM. Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. Afr J Biotechnol. 2011;10:1375–1383. https://doi.org/10.5897/AJB10.1748.

34. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81. https://doi.org/10.1016/j.biortech.2010.06.159.

35. Krzemińska I, Pawlik Skowrońska B, Trzcińska M, Tys J. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst Eng. 2014;37(4):735–741. https://doi.org/10.1007/s00449-013-1044-x.

36. González-Camejo J, Barat R, Paches M, Muragui M, Seco A, Ferrer J. Wastewater nutrient removal in a mixed microalgae–bacteria culture: effect of light and temperature on the microalgae–bacteria competition. Environ Technol. 2018;39(4):503–515. https://doi.org/10.1080/09593330.2017.1305001.

37. Abed IJ, Al-hussieny AA, Kamel RF, Jawad ALM. Environmental and Identification Study of Algae Present in Three Drinking Water Plants Located on Tigris River in Baghdad. Int J Adv Res. 2014;2(3):895–900.

38. Pirt SJ. Principles of Microbe and Cell Cultivation. Oxford: Blackwell Scientific Publications; 1975. 274 p.

39. Yamaguchi K, Nakano H, Murakami M, Kansu S, Nakayama O, Kanda M, Nakamura A, Iwamoto H. Lipid composition of green algae Botryoccoccus braunii. Agric Biol Chem. 1987;51(2):493–498. https://doi.org/10.1080/00021369.1987.10868040.

40. Rippka R, Herdman M. Pasteur Culture Collection of Cyanobacterial Catalogue and taxonomic handbook vol. 1: Catalogue of Strains. Paris: Inst. Pasteur; 1992. 103 p.

41. Huang XH, Li CL, Liu CW, Zeng DQ. Studies on borgei. J Zhanjiang Ocean Univ. 2002;22(3):8–12.

42. Andersen RA, Kawachi M. Algal culturing techniques. In: Andersen RA, editor. Algal culturing techniques. Elsevier Academic Press; 2005. p. 83–100.

43. Watanabe M. Fresh water culture media. In: Andersen RA, editor. Algal culturing techniques. Phycological Society of America, Elsevier Academic Press; 2005. p. 13–20.

44. Shanab SMM, Ali HEA. Impact of Culture Media Composition, Nutrients Stress and Gamma Radiation on Biomass and Lipid of the Green Microalga, Dictyochloropsis splendida as a Potential Feedstock for Biodiesel Production. Baghdad Sci J. 2022;19(1):0043. https://doi.org/10.21123/bsj.2022.19.1.0043.

45. Sharmila D, Suresh A, Indhumathi J, Gowtham K, Velmurugan N. Impact of various color filtered LED lights on microalgae growth, pigments and lipid production. Eur J Biotechnol Biosci. 2018;6(6):1–7.

46. Bhat O, Pongpan K, Unpaprom Y, Ramaraj R. Effect of blue light on the biomass production of microalgae Spirulina. In: The 50th AAACU Founding Anniversary and 23rd Biennial Conference with International Forum on Agriculture Innovation, Sustainability, Entrepreneurship & Networking (i-FAISEN); 2022. p. 42–49.

47. Manivannan A, Soundararajan P, Halimah N, Ko CH, Jeong BR. Blue LED light enhances growth, phytochemical contents, and antioxidant enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol. 2015;56(1):105–113. https://doi.org/10.1007/s13580-015-0114-1.

48. Rhee G. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol Oceanogr. 1978;23(1):10–25. https://doi.org/10.4319/lo.1978.23.1.0010.

49. Al-Akilly TMI. Possibility of Stimulation of Some Locally Isolated Algae for Production of biofuel. MSc thesis. College of Ibn Alhaitham, University of Baghdad; 2016. 219 p.

50. Tsai DDW, Chen PH, Ramaraj R. The potential of carbon dioxide capture and sequestration with algae. Ecol Eng. 2017;98:17–23. https://doi.org/10.1016/j.ecoleng.2016.10.032.

51. Kim HS, Weiss TL, Thapa HR, Devarenne TP, Han A. A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production. Lab Chip. 2014;14(8):1415–1425. https://doi.org/10.1039/c4lc00008k.

52. Al-Husseini KH, Al-Salman IMA. Epipelic algae and their relation to the nature and composition of the bottom in a section of the Gharaf River in Southern Iraq. Plant Arch. 2019;19(2):4445–4452.

53. Lv B, Liu Z, Chen Y, Lan S, Mao J, Gu Z, Wang A, Yu F, Zheng X, Vasquez HE. Effect of different colored LED lighting on the growth and pigment content of Isochrysis zhanjiangensis under laboratory conditions. J Mar Sci Eng. 2022;10(11):1752. https://doi.org/10.3390/jmse10111752.

54. Khoeyi Z, Seyfabadi J, Ramezanpour Z. Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalgae Chlorella vulgaris. Aquac Int. 2012;20:41–49. https://doi.org/10.1007/s10499-011-9433-9.

55. Cheirsilp B, Torpee S. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour Technol. 2012;110:510–516. https://doi.org/10.1016/j.biortech.2012.09.022.

56. Muñoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40(15):2799–2815. https://doi.org/10.1016/j.watres.2006.06.011.

57. Robin J, Rene H, Maria J. Bioprospecting and characterization of temperature tolerant microalgae from Bonaire. Algal Res. 2020;50:101990. https://doi.org/10.1016/j.algal.2020.101990.

58. Singh SP, Singh P. Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev. 2015;50:431–444. https://doi.org/10.1016/j.rser.2015.05.024.

59. Sánchez-Bayo A, Morales V, Rodríguez R, Vicente G, Bautista LF. Cultivation of microalgae and cyanobacteria: effect of operating conditions on growth and biomass composition. Molecules. 2020;25(12):2834. https://doi.org/10.3390/molecules25122834.

Downloads

Published

20-Oct-2025

Issue

Section

Biology

How to Cite

[1]
Al-temimi, A.A. and Al-Akailly, T.M.I. 2025. Influence of Type of Culture Media and Light Colors on Biomass and Harvesting Time of Green Algae (Chlorococcum humicola). Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 51–63. DOI:https://doi.org/10.30526/38.4.3763.