New Lifetime Alpha Power Exponential Weibull Distribution: Structure and Properties

Authors

DOI:

https://doi.org/10.30526/38.3.3885

Keywords:

alpha power family, exponential Weibull distribution, survival function, moments about the origin, moment generating function

Abstract

In statistics theory, adding a new parameter is considered one of the important things that help in producing statistical distributions more flexible and appropriate in data analysis. Alpha-power transformations are considered a modern technique that involves adding a shape parameter to generate new statistical distributions. In this paper, a new life continuous distribution of three parameters is presented by fitting the alpha power transformations family distribution with two parameters lifetime exponential Weibull distribution. The new model named alpha-power exponential Weibull distribution (APEWD) with three parameters , where  and  are classified as scale parameters and  parameter is classified as a shape parameter. The cumulative, probability density, survival, hazard functions, and statistical properties of the proposed new model distribution were discussed and studied such as quantile function, moment about origin, moment generating function, Skewness, Kurtosis, factorial moments generating function, and characteristic function. To expand the probability density function for the new distribution, we took advantage of expanding the exponential function for ease of dealing with finding statistical properties

Author Biographies

  • Hiba Mahdi Saleh, Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of   Baghdad, Baghdad, Iraq

  • Ali Talib Mohammed, Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Mathematics, College of Education for Pure Science (Ibn Al-Haitham), University of   Baghdad, Baghdad, Iraq

  • Umar Yusuf Madaki, Department of Mathematics and Statistics, Faculty of Science, Yobe State University Damaturu, Nigeria.

    Department of Mathematics and Statistics, Faculty of Science, Yobe State University   Damaturu, Nigeria.

References

1. Cordeiro G.M., Ortega E.M.M., Lemonte A.J. The exponential–Weibull lifetime distribution. J Stat Comput Simul 2014;84(12):2592–2606. https://doi.org/10.1080/00949655.2013.877366

2. Nasiru S. Serial Weibull Rayleigh distribution: theory and application. Int J Comput Sci Math 2016;7(3):239–244. https://doi.org/10.1504/IJCSM.2016.077859.

3. Mohammed M.J., Hussein I.H. Study of new mixture distribution. In: Proc Int Conf Eng Appl Sci (ICEMASP); 2018.

4. Mohammed M.J., Hussein I.H. Some estimation methods for new mixture distribution with simulation and application. IOP Conf Ser Mater Sci Eng 2019;571(1):012014. https://doi.org/10.1088/1757-899X/571/1/012014.

5. Mohammed A.T., Mohammed M.J., Salman M.D., Ibrahim R.W. The inverse exponential Rayleigh distribution and related concepts. Ital J Pure Appl Math 2022;47:852–861. https://doi.org/10.12743/ijpam.v47i0.2022.852.

6. Mohammed M.J., Mohammed A.T. Parameter estimation of inverse exponential Rayleigh distribution based on classical methods. Int J Nonlinear Anal Appl 2021;12(1):935–944. https://doi.org/10.22075/ijnaa.2021.4948.

7. Mohammed M.J. A new mixture distribution: theory and application. PhD Thesis, College of Education for Pure Sciences (Ibn al-Haitham), University of Baghdad; 2019.

8. Hussein L.K., Hussein I.H., Rasheed H.A. A class of exponential Rayleigh distribution and new modified weighted exponential Rayleigh distribution with statistical properties. Ibn Al-Haitham J Pure Appl Sci 2023;36(2):390–406. https://doi.org/10.30526/36.2.3044.

9. Zain S.A., Hussein I.H. Estimate for survival and related functions of weighted Rayleigh distribution. Ibn Al-Haitham J Pure Appl Sci 2021;34(1):1–12. https://doi.org/10.30526/34.1.288378.

10. Zain S.A., Hussein I.H. Some aspects of weighted Rayleigh distribution. Ibn Al-Haitham J Pure Appl Sci 2020;33(2):107–114. https://doi.org/10.30526/33.2.276110

11. Atiya Kalaf B., Jabar N.A.A., Madaki U.Y. Truncated inverse generalized Rayleigh distribution and some properties. Ibn Al-Haitham J Pure Appl Sci 2023;36(4):414–428. https://doi.org/10.30526/36.4.3047.

12. Abdulateef E.A., Salman A.N. On shrinkage estimation for R(s, k) in case of exponentiated Pareto distribution. Ibn Al-Haitham J Pure Appl Sci 2019;32(1):147–156. https://doi.org/10.30526/32.1.288378.

13. Salman A.N., Sail F.H. Different estimation methods for system reliability multi-components model: exponentiated Weibull distribution. Ibn Al-Haitham J Pure Appl Sci 2018;36:363–377. https://doi.org/10.30526/36.1.276110

14. Mahdavi A., Kundu D. A new method for generating distributions with an application to exponential distribution. Commun Stat Theory Methods 2017;46(13):6543–6557. https://doi.org/10.1080/03610926.2015.1130839

15. Ceren Ü., Çakmakyapan S., Özel G. Alpha power inverted exponential distribution: properties and application. Gazi Univ J Sci 2018;31(3):954–965. https://doi.org/10.17341/gujs.38948.

16. Ihtisham S., Khalil A., Manzoor S., Khan S.A., Ali A. Alpha-Power Pareto distribution: its properties and applications. PLoS One 2019;14(6):e0218027. https://doi.org/10.1371/journal.pone.0218027.

17. Ahmad Z., Ilyas M., Hamedani G.G. The extended alpha power transformed family of distributions: properties and applications. J Data Sci 2021;17(4):726–741. https://doi.org/10.6339/JDS.2021.17.4.726.

18. Ahmad Z., Elgarhy M., Abbas N. A new extended alpha power transformed family of distributions: properties and applications. J Stat Model Stat Appl 2020;1(1):13–27. https://doi.org/10.30526/1.1.13.

19. Elbatal I., Ahmad Z., Elgarhy M., Almarashi A.M. A new alpha power transformed family of distributions: properties and applications to the Weibull model. J Nonlinear Sci Appl 2018;12(1):1–20. https://doi.org/10.22436/jnsa.012.01.01.

20. Eghwerido J.T. The alpha power Teissier distribution and its applications. Afr Stat 2021;16(2):2733–2747. https://doi.org/10.16929/afst/2021.16.2.2733.

21. Mohiuddin M., Kannan R. Alpha power transformed Aradhana distributions, its properties and applications. Indian J Sci Technol 2021;14(31):2483–2493. https://doi.org/10.17485/IJST/v14i31.1054.

22. Ali M., Khalil A., Ijaz M., Saeed N. Alpha-power exponentiated inverse Rayleigh distribution and its applications to real and simulated data. PLoS One 2021;16(1):e0245253. https://doi.org/10.1371/journal.pone.0245253.

23. El-Sherpieny E.-S.A., Hwas H.K. Generalized alpha-power transformation family of distributions with an application to exponential model. J Comput Theor Nanosci 2022;18(6):1677–1684. https://doi.org/10.1166/jctn.2022.1003.

24. El-Helbawy A.A., Hegazy M.A., Al-Dayian G.R. A new family of discrete alpha power distributions. Al-Azhar Univ Sci J Commer Bus Adm 2022;28(1):158–190. https://doi.org/10.21608/ajsb.2022.118003.

25. Mandouh R.M., Sewilam E.M., Abdel-Zaher M.M., Mahmoud M.R. A new family of distributions in the class of the alpha power transformation with applications to income. Asian J Probab Stat 2022;19(1):41–55. https://doi.org/10.9734/ajps/2022/v19i130441.

26. Kilai M., Waititu G.A., Kibira W.A., Alshanbari H.M., El-Morshedy M. A new generalization of Gull alpha power family of distributions with application to modeling COVID-19 mortality rates. Results Phys 2022;36:105339. https://doi.org/10.1016/j.rinp.2022.105339.

27. Elbatal I., Çakmakyapan S., Özel G. Alpha power odd generalized exponential family of distributions: model, properties and applications. Gazi Univ J Sci 2022;35(3):1171–1188. https://doi.org/10.35378/gujs.868555.

28. ElSherpieny E.-S.A., Almetwally E.M. The exponentiated generalized alpha power exponential distribution: properties and applications. Pak J Stat Oper Res 2022;18(2):349–367. https://doi.org/10.18187/pjsor.v18i2.3515.

29. Hussain S., Rashid M.S., Ul Hassan M., Ahmed R. The generalized exponential extended exponentiated family of distributions: theory, properties, and applications. Mathematics 2022;10(19):1–19. https://doi.org/10.3390/math10193419.

30. Kargbo M., Waititu A., Wanjoya A. The generalized alpha power exponentiated inverse exponential distribution and its application to real data. Authorea Prepr 2023. https://doi.org/10.22541/au.168963153.36742019/v1

Downloads

Published

20-Jul-2025

Issue

Section

Mathematics

How to Cite

[1]
Saleh, H.M. et al. 2025. New Lifetime Alpha Power Exponential Weibull Distribution: Structure and Properties. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 3 (Jul. 2025), 336–346. DOI:https://doi.org/10.30526/38.3.3885.