New Exponentiated Exponential- Rayleigh Distribution: Structure and Properties

Authors

DOI:

https://doi.org/10.30526/38.4.4064

Keywords:

Exponential distribution, Rayleigh distribution, Exponential Rayleigh distribution

Abstract

In this research, we will introduce a new distribution, which is called the new exponentiated exponential-Rayleigh distribution, which is built by adding the shape parameter to the cumulative function of the exponential-Rayleigh distribution resulting from merging the cdf function of three parameters continuous distribution. Two of these parameters are scale parameters, and another is the shape parameter and this is to make this new continuous statistical distribution more flexible than other continuous statistical distributions. Besides, discuss the mathematical and statistical properties of this new distribution, including (the mode, the median, the moments about the origin, the coefficients of skewness and kurtosis, the characteristic function, the moment-generating function, the factorial moments-generating function, and the mean time to failure). The shape property of each of the pdf, cdf, and hazard functions was also studied. Multiple shapes were drawn with different parameter values ​​for each of the PDF, CDF, survival, and hazard functions. An organisational table was also created for some of these properties

Author Biographies

  • Dorgham Ali Hamza, Department of Mathematics, College of Education for Pure Sciences (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Mathematics, College of Education for Pure Sciences (Ibn Al-Haitham), University of   Baghdad, Baghdad, Iraq.

  • Maysaa Jalil Mohammed, Department of Mathematics, College of education for pure science(Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

    Department of Mathematics, College of education for pure science(Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq

  • Umar Yusuf Madaki, Department of Mathematics and Statistics, Faculty of Sciences, Yobe State University Damaturu, Nigeria.

    Department of Mathematics and Statistics, Faculty of Sciences, Yobe State University Damaturu, Nigeria.

References

1. Mahdi G, Mohammed SF, Khan MKH. Enhanced support vector machine methods using stochastic gradient descent and its application to heart disease dataset. Ibn Al-Haitham J Pure Appl Sci. 2024;37(1):412-428. https://doi.org/10.30526/37.1.3467.

2. Jebur IG, Kalaf BA, Salman AN. An efficient shrinkage estimators for generalized inverse Rayleigh distribution based on bounded and series stress-strength models. J Phys Conf Ser. 2021;1897(1):012054. https://doi.org/10.1088/1742-6596/1897/1/012054.

3. Habeeb SB, Abdullah FK, Shalan RN, Hassan AS, Almetwally EM, Alghamdi FM, Alsheikh SM, Hossain MM. Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation. Alex Eng J. 2024;98:356-363. https://doi.org/10.1016/j.aej.2024.04.042.

4. Shamran MA, Mohammed AA, Alkanani IH. Comparison between modified weighted Pareto distribution and many other distributions. Baghdad Sci J. 2023;20(3 Suppl):1108. https://doi.org/10.21123/bsj.2023.8169.

5. Aldraji ZA. Reliability function estimated for generalized exponential Rayleigh distribution under type-I censored data and fuzzy data. Int J Neutrosophic Sci. 2024;24(2). https://doi.org/10.54216/IJNS.240202.

6. Mohammed AT, Hussein IH. Nonparametric estimation for hazard rate function by wavelet procedures with simulation. IOP Conf Ser Mater Sci Eng. 2019;571(1):012013. https://doi.org/10.1088/1757-899X/571/1/012013.

7. Shalan RN, Alkanani IH. The simulation technique to estimate the parameters of generalized exponential Rayleigh model. Iraqi J Sci. 2024;65(3):1502-1520. https://doi.org/10.24996/ijs.2024.65.3.27.

8. Mohammed AT, Mohammed MJ, Salman MD, Ibrahim RW. The inverse exponential Rayleigh distribution and related concepts. Ital J Pure Appl Math. 2022;47:852-861.

9. Raheem SH, Kalaf BA, Salman AN. Comparison of some estimation methods of stress-strength model: R=. Baghdad Sci J. 2021;18(1 Suppl):1103. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).1103.

10. Shalan RN. Compare some shrinkage Bayesian estimation method for Gumbel-Max distribution with simulation. Iraqi J Sci. 2024;65(4):2150-2159. https://doi.org/10.24996/ijs.2024.65.4.32.

11. Algamal ZY. Exponentiated exponential distribution as a failure time distribution. Iraqi J Stat Sci. 2008;14:63-75.

12. Abuzinadah H. A study on mixture of exponentiated Pareto and exponential distributions. J Appl Sci Res. 2010;6(4).

13. Pinho LG, Cordeiro GM, Nobre JS. The gamma-exponentiated Weibull distribution. J Stat Theory Appl. 2012;11(4):379-395.

14. Flaih A, Elsalloukh H, Mendi E, Milanova M. The exponentiated inverted Weibull distribution. Appl Math Inf Sci. 2012;6(2):167-171.

15. Cordeiro GM, Ortega EM, da Cunha DC. The exponentiated generalized class of distributions. J Data Sci. 2013;11(1):1-27.

16. Alzaghal A, Famoye F, Lee C. Exponentiated TX family of distributions with some applications. Int J Stat Probab. 2013;2(3):31. https://doi.org/10.5539/ijsp.v2n3p31.

17. Louzada F, Marchi V, Carpenter J. The complementary exponentiated exponential geometric lifetime distribution. J Probab Stat. 2013;2013:502159. https://doi.org/10.1155/2013/502159.

18. Hussian MA. Transmuted exponentiated gamma distribution: A generalization of the exponentiated gamma probability distribution. Appl Math Sci. 2014;8(27):1297-1310. https://doi.org/10.12988/ams.2014.42105.

19. Ashour SK, Eltehiwy MA. Exponentiated power Lindley distribution. J Adv Res. 2015;6(6):895-905. https://doi.org/10.1016/j.jare.2014.08.005.

20. Elgarhy M, Shakil M, Kibria G. Exponentiated Weibull-exponential distribution with applications. Appl Appl Math. 2017;12(2):5.

21. Refaie MK. Burr X exponentiated exponential distribution. J Stat Appl. 2018;1(2):71-88.

22. Jabeen S, Para B. Exponentiated gamma exponential distribution. Sohag J Math. 2018;5(3):79-84. https://doi.org/10.18576/sjm/050301.

23. Elgarhy M. On the exponentiated Weibull Rayleigh distribution. Gazi Univ J Sci. 2019;32(3):1060-1081. https://doi.org/10.35378/gujs.315832.

24. Al-Sulami D. Exponentiated exponential Weibull distribution: mathematical properties and application. Am J Appl Sci. 2020;17(1):188-195. https://doi.org/10.3844/ajassp.2020.188.195.

25. Aldahlan MA, Afify AZ. The odd exponentiated half-logistic exponential distribution: estimation methods and application to engineering data. Mathematics. 2020;8(10):1684. https://doi.org/10.3390/math8101684.

26. Poonia N, Azad S. A new exponentiated generalized linear exponential distribution: properties and application. Res Math Stat. 2021;8(1):1953233. https://doi.org/10.1080/27658449.2021.1953233.

27. Dhungana GP, Kumar V. Exponentiated odd Lomax exponential distribution with application to COVID-19 death cases of Nepal. PLoS One. 2022;17(6):e0269450. https://doi.org/10.1371/journal.pone.0269450.

28. Bhat AA, Ahmad SP. An extension of exponentiated Rayleigh distribution: properties and applications. Thailand Stat. 2023;21(1):209-227.

29. Hussein LK, Rasheed HA, Hussein IH. A class of exponential Rayleigh distribution and new modified weighted exponential Rayleigh distribution with statistical properties. Ibn Al-Haitham J Pure Appl Sci. 2023;36(2):390-406. https://doi.org/10.30526/36.2.3044.

30. Ghazal MG, Hasaballah HM. Exponentiated Rayleigh distribution: A Bayes study using MCMC approach based on unified hybrid censored data. J Adv Math. 2017;12(12):6863-6880.

31. Hassan AS, Khaleel MA, Mohamd RE. An extension of exponentiated Lomax distribution with application to lifetime data. Thailand Stat. 2021;19(3):484-500.

32. Ahmed MT, Khaleel MA, Oguntunde PE, Abdal-Hammed MK. A new version of the exponentiated Burr X distribution. J Phys Conf Ser. 2021;1818(1):012116. https://doi.org/10.1088/1742-6596/1818/1/012116.

33. Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz exponential (EGOE) distribution: derivation, properties and applications. Istatistik J Turk Stat Assoc. 2021;13(1):12-28.

34. Murat U, Özel G. Exponentiated Weibull-logistic distribution. Bilge Int J Sci Technol Res. 2020;4(2):55-62.

35. Sridhar Babu M, Srinivasa Rao G, Rosaiah K. Double-acceptance sampling plan for exponentiated Fréchet distribution with known shape parameters. Math Probl Eng. 2021;2021:7308454. https://doi.org/10.1155/2021/7308454.

Downloads

Published

20-Oct-2025

Issue

Section

Mathematics

How to Cite

[1]
Hamza, D.A. et al. 2025. New Exponentiated Exponential- Rayleigh Distribution: Structure and Properties. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 340–351. DOI:https://doi.org/10.30526/38.4.4064.