Effect of Cerium Ion on Microstructure and Dielectric Properties of Ni-Zn Ferrites Prepared by Solid State Reaction Method
DOI:
https://doi.org/10.30526/38.4.4109Keywords:
Mixed ferrite , Dielectric constant, microstructure, Rare-earth dopingAbstract
In this work, the Nickel and zinc Ferrite Ni0.5Zn0.5 Fe2O4 +XCeO2 in purity and purity structure were prepared at multi–concentration X (0.0,0.05,0.10,0.15, and 0.20) using the solid state interaction method at a temperature (1000 °C) for four hours in air. The XR-diffraction shows that the prepared powder samples have a spinal structure at single cubic phase. The lattice parameters were decreasing from 8.331 to 8.3021 with increasing concentration of cerium's Ionic Ce4+, also the crystal volume for purity samples is larger than in purity samples, decreasing from (578.217 to 571.993) A°3 with increasing concentration. However, the real and imaginary dielectric constants were measured for both pure and in purity samples by Ce4+. The dielectric constant shows that up to down decreases with increasing frequency. However, the x-ray density was increasing from 6.887 g/cm3 to 6.963 g/cm3 with increasing concentration. The conductivity of alternating current for preparing the sample increased firstly with frequency and remained constant, then a constant behavior was observed at higher frequencies. The microscopic pharmaology structure using the tunneling electron microscopy, that which particles have a spherical structure.
References
1. Lide DR, editor. CRC handbook of chemistry and physics. CRC Press; 2004.
2. Sreematha B, Arundhatha N, Ravinder D. Influence of cerium substitution on structural, optical, and electrical transport properties of Ni-nano ferrites prepared by citrate gel auto-combustion method. Results Chem. 2023;5:100029. https://doi.org/10.1016/j.rechem.2023.100929.
3. Shan M, Ding S, Hna J, Cui W, Wang W. Effect of annealing temperature on structural and magnetic properties of sol-gel synthesized Co0.8Fe2.2O4/SiO2 nanocomposites. J Sol-Gel Sci Technol. 2018;88(3):53–60. https://doi.org/10.1007/s10971-018-4789-5.
4. Chandamma N, Manohara BM, Ujjinappa BS, Shankarmurthy GJ, Kumar MS. Structural and electrical properties of zinc-doped nickel ferrite nanoparticles prepared via a facile combustion technique. J Alloys Compd. 2017;702: 479-488. https://doi.org/10.1016/j.jallcom.2016.12.392.
5. Akhtar MN, Yousaf M, Lu Y, Khan MA, Sarosh A, Arshad M, Niamat M,
Farhan M, Ahmad, A, Khallidoon MU. Physical, structural, conductive and magneto-optical properties of rare earth (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices. Ceram Int. 2021;47(9):11878–11886. https://doi.org/10.1016/j.ceramint.2021.01.028.
6. Kilbourn BT. Cerium and cerium compounds. Kirk-Othmer Encycl Chem Technol. 2000. https://doi.org/10.1002/0471238961.0305180911091202.a01
7. Haxel G. Rare earth elements: critical resources for high technology. US Dep Interior US Geol Surv; 2002.
8. Wang Y, Wu X, Zhang W, Chen W. Synthesis and electromagnetic properties of La-doped Ni–Zn ferrites. J Magn Magn Mater. 2016;398:90–95. https://doi.org/10.1016/j.jmmm.2015.09.044
9. Koops CG. On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys Rev. 1951;83(1):121–127. https://doi.org/10.1103/PhysRev.83.121
10. Saadon AK. Preparation and study of some electrical properties of Mn–NiFe2O4. Ibn Al-Haitham J Pure Appl Sci. 2013;26(3):69–76. https://jih.uobaghdad.edu.iq/index.php/j/article/view/414.
11. Saadon AK. Studying the effect of zirconia on some physical properties of porcelain. Ibn Al-Haitham J Pure Appl Sci. 2016;29(3):46–53. https://jih.uobaghdad.edu.iq/index.php/j/article/view/11.
12. Rezlescu N, Rezlescu E. Dielectric properties of copper-containing ferrites. Phys Status Solidi A. 1974;23(2):575–582. https://doi.org/10.1002/pssa.2210230229
13. Jassim KA, Hussein HS. Effect of partial substitution of lanthanum (La) on the structural and electric properties of Bi2Sr2Ca2Cu3−xLaxO10+δ. Ibn Al-Haitham J Pure Appl Sci. 2017;30(3):35–43. https://doi.org/10.30526/30.3.1600
14. Irvine JT, Huanosta A, Valenzuela R, West AR. Electrical properties of polycrystalline nickel zinc ferrites. J Am Ceram Soc. 1990;73(3):729–732. https://doi.org/10.1111/j.1151-2916.1990.tb06580.x
15. Saadon AK, Shaban AH, Jasim KA. Effects of ferrite addition on the properties of polyethylene terephthalate. Baghdad Sci J. 2022;19(1):208. http://dx.doi.org/10.21123/bsj.2022.19.1.0208.
16. Jumaah DH, Saadon AK. Prepared and measuring the structural and dielectric properties of PbTiO3 and PdZrO3. AIP Conf Proc. 2019;2123(1). https://doi.org/10.1063/1.5116983.
17. Aleabi SH, Watan AW, Salman EM, Jasim KA, Shaban AH, AlSaadi TM. The study effect of weight fraction on thermal and electrical conductivity for unsaturated polyester composite alone and hybrid. AIP Conf Proc. 2018;1968(1). https://doi.org/10.1063/1.5039178.
18. Al-Khafaji RS, Jasim KA. Dependence of the microstructure specifications of earth metal lanthanum La substituted Bi2Ba2CaCu2−xLaxO8+δ on cation vacancies. AIMS Mater Sci. 2021;8(4): 550-509. https://doi.org/10.3934/matersci.2021034.
19. Sherin JJ, Bessy TC, Asha S, Kumar CV, Huessien D, Bindhu MR, Rasheed RA, Alarjani KM. Microwave-assisted hydrothermally synthesized cobalt-doped zinc ferrite nanoparticles for the degradation of organic dyes and antimicrobial applications. Environ Res. 2022;208:112687. https://doi.org/10.1016/j.envres.2022.112687.
20. Rahman MM, Hasan N, Hoque MA, Hossen MB, Arifuzzaman M. Structural, dielectric, and electrical transport properties of Al3+ substituted nanocrystalline Ni–Cu spinel ferrites prepared through the sol–gel route. Results Phys. 2022;38:105610. https://doi.org/10.1016/j.rinp.2022.105610.
21. Akhtar MN, Yousaf M, Lu Y, Khan MA, Sarosh A, Arshad M, Niamat M, Farhan M, Ahmad A, Khallidoon MU. Physical, structural, conductive and magneto-optical properties of rare earths (Yb, Gd) doped Ni–Zn spinel nanoferrites for data and energy storage devices. Ceram Int. 2021;47(9):11878–11886. https://doi.org/10.1016/j.ceramint.2021.01.028.
22. Somvanshi SB, Jadhav SA, Khedkar MV, Kharat PB, More SD, Jadhav KM. Structural, thermal, spectral, optical and surface analysis of rare earth metal ion (Gd3+) doped mixed Zn–Mg nano-spinel ferrites. Ceram Int. 2020;46(9):13170–13179. https://doi.org/10.1016/j.ceramint.2020.02.091.
23. Goud S, Venkatesh N, Kumar DR, Barapati S, Veerasomaiah P. Study of structural, optical, photocatalytic, electromagnetic, and biological properties of Co0.75Mg0.25CexFe2−xO4 Mg–Co nanoferrites. Inorg Chem Commun. 2022;145:109969. https://doi.org/10.1016/j.inoche.2022.109969.
24. Sumalatha E, Edukondalu A, Ravinder D. Effect of La3+ ion-doped Co–Zn nanoferrites: structural, optical, electrical and magnetic properties. Inorg Chem Commun. 2022;146:110200. https://doi.org/10.1016/j.inoche.2022.110200.
25. Yang Y, Zhao M, Lai L. Surface activity, micellization, and application of nano-surfactants-amphiphilic carbon dots. Carbon. 2023;202:398–413. https://doi.org/10.1016/j.carbon.2022.11.012.
26. Kalaiselvan CR, Laha SS, Somvanshi SB, Tabish TA, Thorat ND, Sahu NK. Manganese ferrite (MnFe2O4) nanostructures for cancer theranostics. Coord Chem Rev. 2022;473:214809. https://doi.org/10.1016/j.ccr.2022.214809.
27. Kumar SR, Priya GV, Aruna B, Raju MK, Parajuli D, Murali N, Verma R, Batoo KM, Kumar R, Narayana PL. Influence of Nd3+ substituted Co0.5Ni0.5Fe2O4 ferrite on structural, morphological, DC electrical resistivity and magnetic properties. Inorg Chem Commun. 2022;136:109132. https://doi.org/10.1016/j.inoche.2021.109132.
28. Kumari PS, Charan GV, Kumar DR. Synthesis, structural, photocatalytic and anticancer activity of Zn-doped Ni nanochromites by citrate gel auto-combustion method. Inorg Chem Commun. 2022;139:109393. https://doi.org/10.1016/j.inoche.2022.109393
29. Kumar DR, Lincoln CA, Charan GV, Thara G, Ravinder D, Veeraswamy M, Naresh P. Study of photocatalytical, antimicrobial activity, dielectric and AC impedance properties of Zn-doped Mg nanoferrites synthesized from citrate gel auto-combustion method. Mater Chem Phys. 2022;278:125648. https://doi.org/10.1016/j.matchemphys.2021.125648
30. Komali C, Murali N, Rajkumar K, Ramakrishna A, Yonatan Mulushoa S, Parajuli D, Pramila Rani PN, Ampolu S, Chandra Mouli K, Ramakrishna Y. Probing the DC electrical resistivity and magnetic properties of mixed metal oxides Cr3+ substituted Mg–Zn ferrites. Chem Pap. 2023;77(1):109–117. https://doi.org/10.1007/s11696-022-02466-9
31. Zhang X, Mei Y, Cheng H, Ma J, Zhu F, Komarneni S. Activation of K2S2O8 by Ni–Ce composite oxides for the degradation of orange II with visible light assistance. Mater Chem Phys. 2021;270:124784. https://doi.org/10.1016/j.matchemphys.2021.124784
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms