Efficiency of Nano powders of Cloves, Cinnamon, and Turmeric in Ochratoxin A (OTA) production by Penicillium polonicum

Authors

DOI:

https://doi.org/10.30526/38.4.4134

Keywords:

Penicillium polonicum, , Ochratoxin A , Cloves , Cinnamon , Turmeric , Plant Nano powder

Abstract

The study aimed to evaluate the efficiency of Nano powders of Cloves, Cinnamon, and Turmeric in inhibiting fungal growth and Ochratoxin a (OTA) production by Penicillium polonicum and reducing the toxin in liquid media. The research highlights the reduction of ochratoxin toxins using environmentally friendly plant Nano powders that are safe for human and animal consumption. They are mainly used in food as flavorings and preservatives. The Nano treatments of cloves, cinnamon, and the mixture (Cloves-Cinnamon-Turmeric) achieved complete inhibition of fungal growth and OTA toxin production by 100% for concentrations (2, 4, 6, 8%). The treatment of Nano Turmeric powder did not inhibit fungal growth at all concentrations. However, it inhibited OTA toxin production by 87 and 92% for concentrations 2 and 4% and by 100% for both concentrations 6 and 8%. In reducing OTA toxin, the mixture (Cloves-Cinnamon-Turmeric) was superior, with reduction rates of 95% for concentration 2% and 100% for concentrations 4, 6, and 8%. It was followed by the treatment of Clove Nano powder with reduction rates of 78, 84, 89, 94, and 100% for concentrations 0.8, 2, 4, 6 and 8% respectively. The treatment of Turmeric Nano powder came in third place in the efficiency of reducing OTA toxin with rates of 74, 79, 83, 87, and 100% for the same concentrations, respectively. As for Cinnamon Nano powder, it showed reduction rates of 68, 71, 79, 85 and 91% for the same concentrations, respectively

Author Biographies

  • Salam Nsaif Al-Tamimi , Biology Department, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

    Biology Department, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

  • Professor Sumaiya Naeema Hawar , Biology Department, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

    Teaching in Biology Department, College of Education for Pure Sciences/Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

References

1. Shahidi F, Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J Funct Foods. 2015;18:820-97. https://doi.org/10.1016/j.jff.2015.06.018.

2. Tiwari P, Verma R, Ahirwar D, Chandy A, Dwivedi S. Evaluation of anxiolytic effect of Syzygium aromaticum: a traditional herb of India. Asian Pac J Trop Dis. 2014;4(supplement 1):S77-80. https://doi.org/10.1016/S2222-1808(14)60418-7.

3. Parthasarathy VA, Zachariah TJ, Chempakam B. Bay leaf. In Chemistry of Spices 2008 (pp. 426-434). Wallingford UK: CABI. https://doi.org/10.1079/9781845934057.0426.

4. Idowu S, Adekoya AE, Igiehon OO, Idowu AT. Clove (Syzygium aromaticum) spices: A review on their bioactivities, current use, and potential application in dairy products. J Food Meas Charact. 2021;15:3419-35. https://doi.org/10.1007/s11694-021-00915-9.

5. Kamatou GP, Vermaak I, Viljoen AM. Eugenol—from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules. 2012;17(6):6953-81. https://doi.org/10.3390/molecules17066953.

6. Bao LM, Nozaki A, Takahashi E, Okamoto K, Ito H, Hatano T. Hydrolysable tannins isolated from Syzygium aromaticum: structure of a new C-glucosidic ellagitannin and spectral features of tannins with a tergalloyl group. Heterocycles. 2012;85(2):365-81. https://doi.org/10.1002/chin.201225223.

7. Varga J, Rigó K, Téren J, Mesterházy Á. Recent advances in ochratoxin research II. Biosynthesis, mode of action and control of ochratoxins. Cereal Res Commun. 2001;29:93-100. https://doi.org/10.1007/BF03543646.

8. Varga J, Kocsubé S, Péteri Z, Samson RA. An overview of ochratoxin research. Appl Mycol. 2009:38-55. https://doi.org/10.1079/9781845935344.0038.

9. Pfohl‐Leszkowicz A, Manderville RA. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol Nutr Food Res. 2007;51(1):61-99. https://doi.org/10.1002/mnfr.200600137.

10. International Agency for Research on Cancer (IARC). Ochratoxin A. In IARC Monogr Eval Carcinog Risk Chem Hum; IARC Press: Lyon, France, 2003; 56:489–521.

11. Davis ND, Diener UL, Eldridge DW. Production of aflatoxins B1 and G1 by Aspergillus flavus in a semisynthetic medium. Appl Microbiol. 1966;14(3):378-80. https://doi.org/10.1128/am.14.3.378-380.1966.

12. Varga J, Rigó K, Lamper C, Téren J, Szabó G. Kinetics of ochratoxin A production in different Aspergillus species. Acta Biol Hung. 2002;53:381-8. https://d-nb.info/1218935219/34.

13. AOAC (Association of Official Analytical Chemists). Animal feed. Official methods of analysis of Official Analytical Chemists International. 2005. https://www.researchgate.net/publication/292783651_AOAC_2005.

14. Skarkova J, Ostry V, Malir F, Roubal T. Determination of ochratoxin A in food by high performance liquid chromatography. Anal Lett. 2013;46(10):1495-504. https://doi.org/10.1080/00032719.2013.771266.

15. Abbas HK, Mirocha CJ, Shier WT. Mycotoxins produced from fungi isolated from foodstuffs and soil: comparison of toxicity in fibroblasts and rat feeding tests. Appl Environ Microbiol. 1984;48(3):654-61. https://doi.org/10.1128/aem.48.3.654-661.1984.

16. Sukatta U, Haruthaithanasan V, Chantarapanont W, Dilokkunanant U, Suppakul P. Antifungal activity of clove and cinnamon oil and their synergistic against postharvest decay fungi of grape in vitro. Agric Nat Resour. 2008;42(5):169-74. https://www.researchgate.net/publication/233728131.

17. Al-Naemi HS. Study of cytotoxic effect of crude extracts of Bidens tripartita, Panex ginseng, Ceylon cinnamon and Citrullus colocynthis on mice mammary adenocarcinoma cell line. Ibn Al-Haitham J Pure Appl Sci. 2011;24(2). https://jih.uobaghdad.edu.iq/index.php/j/article/view/787.

18. Zari AT, Zari TA, Hakeem KR. Anticancer properties of eugenol: A review. Molecules. 2021;26(23):7407. https://doi.org/10.3390/molecules26237407.

19. Usta J, Kreydiyyeh S, Barnabe P, Bou-Moughlabay Y, Nakkash-Chmaisse H. Comparative study on the effect of cinnamon and clove extracts and their main components on different types of ATPases. Hum Exp Toxicol. 2003;22(7):355-62. https://doi.org/10.1191/0960327103ht379oa.

20. Sanusi F. Evaluation of the subchronic toxicity of Curcuma longa Linn. (Turmeric) in normal Wistar rats. MSc Thesis, Kwara State Univ, Malete, Nigeria. 2019. 101 pp.

21. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev. 1999;12(4):564-82. https://doi.org/10.1128/cmr.12.4.564

22. Inouye S. Laboratory evaluation of gaseous essential oils (Part 1). Int J Aromather. 2003;13(2-3):95-107. https://doi.org/10.1016/S0962-4562(03)00081-X

23. Hassan AA, Oraby NA, Mohamed AA, Mahmoud HH. The possibility of using zinc oxide nanoparticles in controlling some fungal and bacterial strains isolated from buffaloes. Egypt J Appl Sci. 2014;29(3):58-83.

24. Qayyum S, Khan AU. Nanoparticles vs. biofilms: a battle against another paradigm of antibiotic resistance. MedChemComm. 2016;7(8):1479-98. https://doi.org/10.1039/C6MD00124F

25. Tian J, Ban X, Zeng H, He J, Chen Y, Wang Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One. 2012;7(1):e30147. https://doi.org/10.1371/journal.pone.0030147.

26. Farag RS, Daw ZY, Abo‐Raya SH. Influence of some spice essential oils on Aspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci. 1989;54(1):74-6. https://doi.org/10.1111/j.1365-2621.1989.tb08571.x.

27. Bullerman LB. Inhibition of aflatoxin production by cinnamon. J Food Sci. 1974;39:1163-4.

28. Velluti A, Sanchis V, Ramos AJ, Marín S. Control of Fusarium verticillioides growth and fumonisin B1 production in maize grain by the addition of cinnamon, clove, lemongrass, oregano and palmarose essential oils. J Food Sci. 2002.

29. Velluti A, Sanchis V, Ramos AJ, Egido J, Marín S. Inhibitory effect of cinnamon, clove, lemongrass, oregano and palmarose essential oils on growth and fumonisin B1 production by Fusarium proliferatum in maize grain. Int J Food Microbiol. 2003;89(2-3):145-54. https://doi.org/10.1016/S0168-1605(03)00116-8

30. Parveen Z, Nawaz S, Siddique S, Shahzad K. Composition and antimicrobial activity of the essential oil from leaves of Curcuma longa L. Kasur variety. Indian J Pharm Sci. 2013;75(1):117. https://doi.org/10.4103/0250-474X.113544.

31. Bullerman LB, Lieu FY, Seier SA. Inhibition of aflatoxin production by cinnamon. J Food Sci. 1974:1163-5. https://doi.org/10.1111/j.1365-2621.1977.tb12677.x.

32. Gonçalez E, Felicio JD, Pinto MM, Rossi MH, Medina C, Fernandes MJ, Simoni IC. Inhibition of aflatoxin production by Polymnia sonchifolia and its in vitro cytotoxicity. Arq Inst Biol. 2003;70(2):139-43. http://dx.doi.org/10.1590/1808-1657v70p1392003.

33. Al-Rawi A. Poisonous plants of Iraq. 3rd ed. Baghdad: Univ Arizona. 1988. 138 p.

34. Leaw SN, Chang HC, Sun HF, Barton R, Bouchara JP, Chang TC. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. J Clin Microbiol. 2006;44(3):693-9. http://dx.doi.org/10.1128/JCM.44.3.693-699.2006.

35. Milos M, Mastelic J, Jerkovic I. Chemical composition and antioxidant effect of glycosidically bound volatile compounds from oregano (Origanum vulgare L. ssp. hirtum). Food Chem. 2000;71(1):79-83. http://dx.doi.org/10.1016/S0308-8146(00)00144-8.

36. Ali BZ, Al-Qaisi EE. Effect of extracts from Zygophyllum fabago on growth and activity of Candida albicans and Aspergillus flavus. Ibn Al-Haitham J Pure Appl Sci. 2017;19(3):14-30A.

37. Abomughaid MM. Isolation and identification of fungi from clinical samples of diabetic patients and studying the antifungal activity of some natural oils on isolated fungi. Baghdad Sci J. 2021;18(3):0462. http://dx.doi.org/10.21123/bsj.2021.18.3.0462.

38. Hussein HZ. Activity of pomegranate peels and clove powders in detoxification of aflatoxin B1 and ochratoxin A from contaminated poultry diet. J Plant Pathol Microbiol. 2015;6(1):1-4. https://doi.org/10.4172/2157-7471.1000249.

39. Hussein HZ, Al-Wahab AA. Assessing the efficacy of certain nano, natural and chemical materials in fungal inhibition and AFB1 toxin reduction of Aspergillus flavus isolated from peanut on PDA media. Plant Arch. 2020;20(1):1051-7.

40. Naz G, Anjum AA, Nawaz M, Iqbal S, Azeem S, Ali T, Manzoor R. Evaluation of Cinnamomum verum essential oils against ochratoxin A-producing Aspergillus parasiticus in stored wheat, maize and rice. Pol J Environ Stud. 2023;32(1). http://dx.doi.org/10.15244/pjoes/155084.

41. Mahdi LH, Alsaadi LG, Mater HN, Kadhem BM, Zwain LA, Al–Newani HR. Antibacterial, antiviral and anticarcinogenic effect of a novel lectin characterized and purified from Terfezia claveryi. Biochem Cell Arch. 2020;20(1). https://doi.org/10.35124/bca.2020.20.1.735.

42. Sandosskumar R, Karthikeyan M, Mathiyazhagan S, Mohankumar M, Chandrasekar G, Velazhahan R. Inhibition of Aspergillus flavus growth and detoxification of aflatoxin B1 by the medicinal plant zimmu (Allium sativum L.× Allium cepa L.). World J Microbiol Biotechnol. 2007;23:1007–1014. http://dx.doi.org/10.1007/s11274-006-9327-x.

43. Al-Timimi SN, Muhsen TA, Hussain HZ. Evaluation of the efficiency of some chemical (Fylex), nanoparticles (MGO) and biological factors in inhibiting of Aspergillus flavus. Plant Arch. 2020;20(2):7345–7351.

44. Jaloud RE, Hassan FF, Al-Aamery RA, Hashim RT. Histopathological and immunohistochemical study of aflatoxin B1 in freshly slaughtered Iraqi sheep meat using CD marker of TNF-α. Int. J. Drug Deliv Technol. 2022;12(2):798–804. https://doi.org/10.25258/ijddt.12.2.58.

45. Taha ZK, Hawar SN, Sulaiman GM. Extracellular biosynthesis of silver nanoparticles from Penicillium italicum and its antioxidant, antimicrobial and cytotoxicity activities. Biotechnol Lett. 2019;41:899–914. https://doi.org/10.1007/s10529-019-02699-x.

46. Mohammed GM, Hawar SN. Morphological and molecular characterisation of endophytic fungi isolated from Moringa oleifera leaves in Iraq and chemical analysis of leaves extracts using GC-Mass. Asian J. Water Environ. Pollut. 2024;21(1):63–70. http://dx.doi.org/10.3233/AJW240009.

47. Hawar SN, Al-Shmgani HS, Al-Kubaisi ZA, Sulaiman GM, Dewir YH, Rikisahedew JJ. Green synthesis of silver nanoparticles from Alhagi graecorum leaf extract and evaluation of their cytotoxicity and antifungal activity. J Nanomater. 2022;2022(1):1058119. https://doi.org/10.1155/2022/1058119.

48. Al-Jubouri FA, Al-Abdaly BI. Anti-oxidant and anti-microbial activities of [ZnO:CoO/eugenol] and [ZnO:Fe2O3/eugenol] nanocomposites. Ibn Al-Haitham J Pure Appl Sci. 2024;37(1):251–264. https://doi.org/10.30526/37.1.3233

49. Al-Shuwaikh AM, Al-Shwaikh RM, Hassan JS. Effect of Trigonella foenum extract and ZiO2 nanoparticles on some pathogenic fungi and bacteria. Prensa Méd Argent. 2019:302–308.

50. Mustafa MA, Wasman PH. The impact of powders and oil additives of cinnamon and clove in quails diet as antistressor and antioxidant during hot months. Iraqi J Agric Sci. 2020;51(3):760–766. https://doi.org/10.36103/ijas.v51i3.1031.

51. Hajare SS, Hajare SN, Sharma A. Aflatoxin inactivation using aqueous extract of ajowan (Trachyspermum ammi) seeds. J Food Sci. 2005;70(1):29–34. https://doi.org/10.1111/j.1365-2621.2005.tb09016.x.

52. Mhamdi B, Aidi WW, Chahed T, Ksouri R, Marzouk B. Phenolic compounds and antiradical scavenging activity changes during Borago officinalis stalk leaf development. Asian J Chem. 2010;22:6397–6402. https://asianpubs.org/index.php/ajchem/article/view/11834.

53. Towaha J. Manfaat eugenol cengkeh dalam berbagai industri di Indonesia. Perspektif. 2012;11(2):79–90. https://repository.pertanian.go.id/server/api/core/bitstreams/db99eedd-2a0c-4185-9a8f-55e51beacc40/content.

54. Al-Timimi SNJ. Study the effect of using some biological, nanoparticles and chemical agent in reducing of aflatoxin B1 and protection of maize seeds from Aspergillus flavus infection. Master Thesis, Coll. Educ. Pure Sci. (Ibn Al-Haitham), Univ. Baghdad. 2020;170 p.

55. Hameed HQ, Hasan AA, Abdullah RM. Effect of Olea europea L extraction and TiO2 nanoparticles against Pseudomonas aeruginosa. Indian J Public Health Res Dev. 2019;10(6). http://dx.doi.org/10.5958/0976-5506.2019.01459.1

Downloads

Published

20-Oct-2025

Issue

Section

Biology

How to Cite

[1]
Al-Tamimi , S.N. and Hawar , S.N. 2025. Efficiency of Nano powders of Cloves, Cinnamon, and Turmeric in Ochratoxin A (OTA) production by Penicillium polonicum. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 64–74. DOI:https://doi.org/10.30526/38.4.4134.