Study of the Properties of Image Formation by an Optical System Consisting of a Diffractive Lens

Authors

DOI:

https://doi.org/10.30526/38.4.4144

Keywords:

Diffractive lens, Zemax program, Point spread function, Optical transfer function

Abstract

Diffractive lenses form images based on the principle of light diffraction, unlike conventional lenses that rely on the phenomenon of refraction to form images. Diffractive lenses consist of precisely aligned structures of holes or slits that act as optical gratings. They are arranged to give the lens the optical property of changing the path of incident rays, creating an image pattern similar to that of conventional lenses. This work aims to study the image characteristics formed by diffractive lenses by conducting a computer simulation in the Zemax optical design software. The analysis tools available in the software are then used to study the quality of the resulting image and evaluate the performance of the diffractive lens. The results show that the image characteristics formed by diffractive lenses are similar to those of conventional lenses. These results indicate the image-forming performance of diffractive lenses. This gives designers flexibility in lens design, in terms of the type and number of slits used without the use of spherical surfaces

 

Author Biographies

  • Raghda Z. Khuder, Department of Physics, Collage of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Education for pure science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

  • Alaa B. Hasan, Department of Physics, Collage of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

    Department of Physics, Collage of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.

References

1. Khaligh OC, Alireza S. Energy harvesting: solar, wind, and ocean energy conversion systems. CRC press. 2017;22:12-23. https://doi.org/10.1201/9781439815090

2. Heidari N, Pearce JM. A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages, Renew. Sustain. Energy Rev. 2016;55(2):899–908. http://dx.doi.org/10.1016/j.rser.2015.11.025

3. Ginley NR, Green A. Solar Energy Conversion Toward 1 Terawatt, Hornessing Mater. Energy. 2008;12(3):355–364. http://dx.doi.org/10.1557/mrs2008.71

4. Irena A. Renewable Energy Cost Analysis - Concentrating Solar Power. Int Renew. Energy Agency Renew. 2012;23:1–41.

5. Rauschenbach S, Hans S. Solar cell array design handbook: the principles and technology of photovoltaic energy conversion. Springer Sci Bus Media .2012.

6. Dudley E, Kolb J, Mahoney A, Mancini T, Kearney D. Test results: SEGS LS-2 solar collector. Sandia National Laboratory. Albuquerque, NM (United States). 1994;140:33-45.

7. Duffie WB, John A. Solar engineering of thermal processes. Appl. Opt. 2013;12: 55-67. https://DOI:10.1002/9781118671603.

8. Zhang JX, Hoshino K. Optical molecular sensing and spectroscopy. Optic Transduc. 2019;12(2): 23-45. http://dx.doi.org/10.1016/B978-0-12-814862-4.00005-3.

9. Yoneda N, Miyazaki M, Matsumura H, Yamato M. A design of novel grooved circular waveguide polarizers, IEEE Trans. Microw. Theory Tech. 2000;48:2446–2452. https://doi.org/10.1109 /22.898996.

10. Karp JH, Ford JE. Planar micro-optic solar concentration using multiple imaging lenses into a common slab waveguide, High Low Conc. Syst. Sol. Electr Appl IV. 2009;74(4):70-76. http://dx.doi.org /10.1117/12.826531.

11. Karp JH, Tremblay EJ, Ford JE. Radial coupling method for orthogonal concentration within planar micro-optic solar collectors. Opt InfoBase Conf Pap. 2010;12:9–11. https://doi.org/10.1364 /OSE.2010.STuD2

12. Cheng YL. Review on Optical Waveguides. Shankar, Intech. 2018;11(2):13-18. https://dx.doi.org /10.5772/intechopen.77150.

13. Bauser HC. Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics. 2020;7:2122–2131. http://dx.doi.org/10.1021/acsphotonics.0c00593

14. Rühle S, Greenwald S, Koren E, Zaban A. Optical waveguide enhanced photovoltaics. Opt Express. 2008;16(2):26-32. http://dx.doi.org/10.1364/OE.16.021801.

15. Wang YM, Zheng G, Yang C. Characterization of acceptance angles of small circular apertures. Opt. Express. 2009;12(3):45-56. https://doi.org/10.1364/oe.17.023903.

16. Murphy F, Tommy D. Analysing curved optical waveguides using the finite difference beam propagation method. Appl Opt. 2020;11(2):67-78. https://cora.ucc.ie/items/4ddac268-7e69-42ff-bb8c-74ae144c5b5f.

17. Farhan M, Adnan BI. The effect of temperature on polymethyl methacrylate acrylic (PMMA). Appl Opt. 2013;17:22-34. https://doi.org/10.1016/j.polymertesting.2016.12.016

18. Hsu M¬Y, Shenq TC, Ting MH. Thermal optical path difference analysis of the telescope correct lens assembly. Adv Opt Technol. 2012;6(4):447-453.‏ https://doi.org/10.1515/aot-2012-0058

19. Mahajan VN. Optical Imaging and Aberrations. Ray Geometrical Optics, Part I, II, By SPIE: Press Monograph. 1998;45:344-355. https://doi.org/10.1117/3.265735

20. Sanyal S, Ajay G. The factor of encircled energy from the optical transfer function. J Opt A: Pure Appl Opt. 2002;4:208-211. https://DOI.10.1088/1464-4258/4/2/316

21. Al-Saadi TM, Hussein BH, Hasan AB, Shehab AA. Study the structural and optical properties of Cr doped SnO2 nanoparticles synthesized by sol-gel method. Energy Proc. 2019;157:457–465. https://doi.org/10.1016/j.egypro.2018.11.210

22. Alaa BH, Husain SA. Design of Light Trapping Solar Cell System by Using Zemax Program. J Phys: Conf Series. 2018;1003:25- 32. https://DOI.10.1088/1742-6596/1003/1/012074

23. Alaa BH. Studying Optical Properties of Quantum Dot Cylindrical Fresnel Lens. NeuroQuantology 2022;20(2):97–104. http://dx.doi.org/10.14704/nq.2022.20.1.NQ22013

24. Hamza HN, Alaa BH. Design of Truncated Hyperboloid Solar Concentrator by Using Zemax Program. Ibn Al-Haitham J Pure Appl Sci. 2022;35(2):1-7. http://dx.doi.org/ 10.30526/35.1.2780

25. Al-Hamdani AH, Rashid HG, Hasan AB. Irradiance distribution of image surface in microlens array solar concentrator. ARPN J Eng Appl Sci. 2013;5:23-31.

26. Karszewski KM, Stewen C, Giesen A, Huge H. Theoretical modeling and experimental investigations of the diode-pumped thin-disk Yb :YAG laser, Quantum Electron. Optica Mag. 1999;29:86-97. https://DOI.10.1070/QE1999v029n08ABEH001555

27. Mohammad HS. Determination and suppression of back reflected pump power in Yb:YAG thin-disk laser. Optical Eng. 2017;56(1):1-8. http://dx.doi.org/10.1117/1.OE.56.2.026109

28. Hariton V. Feasibility study and simulation of a high-energy diode-pumped solid-state amplifier. Tecnico Lisboa. 2016;12(3);1-94.

29. Kazemi SS, Mahdieh MH. Determination and suppression of back-reflected pump power in Yb:YAG thin-disk laser. Optical Eng. 2017;56:026109. http://dx.doi.org/10.1117/1.OE.56.2.026109

Khudair YY, Alaa BH. Design and Evaluation of Polygonal Trough Solar Concentrator. Ibn Al-Haitham J Pure Appl Sci. 2021;34(4):10-16. http://dx.doi.org/10.30526/34.4.2696

Downloads

Published

20-Oct-2025

Issue

Section

Physics

How to Cite

[1]
Khuder, R.Z. and Hasan, A.B. 2025. Study of the Properties of Image Formation by an Optical System Consisting of a Diffractive Lens. Ibn AL-Haitham Journal For Pure and Applied Sciences. 38, 4 (Oct. 2025), 180–189. DOI:https://doi.org/10.30526/38.4.4144.