Study of Nuclear Deformations for Some Nuclei located Near the Nuclear Island of Inversion Region
DOI:
https://doi.org/10.30526/38.4.4146Keywords:
Magnetic moment, Electric quadrupole, Island of inversion, Reduced quadrupole deformation parameterAbstract
In this work, we have carried out a detailed theoretical analysis of the nuclear deformations of some of the nuclei situated in the vicinity and within the nuclear Island of Inversion. The properties that were studied included the calculation of the magnetic moment and the electric quadrupole moment to gather with reduced quadrupole deformation parameter for even-even isotopes of Ne, Mg, and Si nuclei, to explain the behavior of the nuclei in question, and how much they deviate from the spherical shape in this critical region. All theoretical computations were conducted utilizing the NushellX@MSU shell model code within the sd space with the effective two-body interaction USDC. The comparative analysis with available experimental data revealed that certain theoretical parameterizations produced results in good agreement with experimental values. For instance, the theoretical magnetic moment of 29Si was found to be −0.522, closely matching the experimental value of −0.555, indicating reasonable consistency. Furthermore, noticeable variations were observed in the calculated moments and deformations of the studied nuclei. For example,31Mg exhibited a theoretical magnetic moment of 1.348 compared to the experimental value of −0.883. Additionally, some isotopes displayed very large deformations, which confirms the presence of intricate shell effects due to the increased number of neutrons and the resulting modifications in the internal structure of the nucleus
References
1. Ali AH. Investigation of the quadrupole moment and form factors of some Ca isotopes. Baghdad Sci J. 2020;17(2):18. https://doi.org/10.21123/bsj.2020.17.2.0502
2. Wilson GL, Catford WN, Orr NA, Diget CA, Matta A, Hackman G, Williams SJ, Celik IC, Achouri NL, Al Falou H, Ashley R. Shell evolution approaching the N=20 island of inversion: Structure of 26Na. Phys Lett B. 2016;759:417–23. https://doi.org/10.1016/j.physletb.2016.05.093
3. Ali AH, Idrees MT. Study of deformation parameters (β2, δ) for 18, 20, 22, 24, 26, 28Ne isotopes in sdpf shell. Karbala Int J Mod Sci. 2020;6(1):11. https://doi.org/10.33640/2405-609X.1376
4. Rainwater J. Nuclear energy level argument for a spheroidal nuclear model. Phys Rev. 1950;79(3):432. https://doi.org/10.1103/PhysRev.79.432
5. Brown BA, Wildenthal BH. Status of the nuclear shell model. Annu Rev Nucl Part Sci. 1988;38(1):29–66.
6. Radhi RA, Alzubadi AA, Ali AH. Calculations of the quadrupole moments for some nitrogen isotopes in p and psd shell model spaces using different effective charges. Iraqi J Sci. 2017;58(2B):12. https://doi.org/10.24996/ijs.2017.58.2B.12
7. Caurier E, Nowacki F, Poves A. Merging of the islands of inversion at N=20 and N=28. Phys Rev C. 2014;90(1):014302. https://doi.org/10.1103/PhysRevC.90.014302
8. Radhi RA, Alzubadi AA, Rashed EM. Shell model calculations of inelastic electron scattering for positive and negative parity states in 19F. Nucl Phys A. 2016;947:12–25. https://doi.org/10.1016/j.nuclphysa.2015.12.002
9. Brown BA. The nuclear shell model towards the drip lines. Prog Part Nucl Phys. 2001;47(2):517–99. https://doi.org/10.1016/S0146-6410(01)00159-4
10. Kameda D, Ueno H, Asahi K, Takemura M, Yoshimi A, Haseyama T, Uchida M, Shimada K, Nagae D, Kijima G, Arai T. Nuclear moments of neutron-rich 32Al. J Phys Conf. 2006;49(1):138. https://doi.org/10.1088/1742-6596/49/1/030
11. Alzubadi AA, Obaid RS. Study of the nuclear deformation of some even–even isotopes using Hartree–Fock–Bogoliubov method (effect of the collective motion). Indian J Phys. 2019;93:75–92. https://doi.org/10.1007/s12648-018-1269-2
12. Poves A, Sánchez-Solano J, Caurier E, Nowacki F. Shell model study of the isobaric chains A=50, A=51 and A=52. Nucl Phys A. 2001;694(1–2):157–98. https://doi.org/10.1016/S0375-9474(01)00967-8
13. Safronova MS, Safronova UI, Radnaev AG, Campbell CJ, Kuzmich A. Magnetic dipole and electric quadrupole moments of the 229Th nucleus. Phys Rev A. 2013;88(6):060501. https://doi.org/10.1103/PhysRevA.88.060501
14. Radhi RA, Alzubadi AA. Study the nuclear form factors of low-lying excited states in nucleus using the shell model with Skyrme effective interaction. Few-Body Syst. 2019;60(3):57. https://doi.org/10.1007/s00601-019-1524-x
15. Brussaard PJ, Glaudemans PWM. Shell model applications in nuclear spectroscopy. Amsterdam: North-Holland; 1977. https://lccn.loc.gov/77007915
16. Brink D, Stancu F. Evolution of nuclear shells with the Skyrme density dependent interaction. Phys Rev C. 2007;75(6):064311. https://doi.org/10.1103/PhysRevC.75.064311
17. Glasmacher T, Brown AB, Chromik M, Cottle P, Fauerbach M, Ibbotson R, Kemper K, Morrissey D, Scheit H, Sklenick D, Steiner M. Collectivity in 44S. Phys Lett B. 1997;395:163–8. https://doi.org/10.1016/S0370-2693(97)00077-4
18. Brown BA, Radhi R, Wildenthal BH. Electric quadrupole and hexadecupole nuclear excitations from the perspectives of electron scattering and modern shell-model theory. Phys Rep. 1983;101(5):313–58. https://doi.org/10.1016/0370-1573(83)90001-7
19. National Nuclear Data Center. Available from: https://www-nds.iaea.org
20. Pritychenko B, Birch M, Singh B, Horoi M. Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. At Data Nucl Data Tables. 2016;107:1–139. https://doi.org/10.1016/j.adt.2015.10.001
21. Stone N. Table of nuclear magnetic dipole and electric quadrupole moments. At Data Nucl Data Tables. 2005;90(1):75–176. https://doi.org/10.1016/j.adt.2005.04.001
22. Liesem H. Unelastische Elektronenstreuung am 1,78 MeV- und 11,4 MeV-Niveau des Si-28. Z Phys. 1966;196:174–84. https://doi.org/10.1007/BF01326426
23. Fewell MP, Kean DC, Spear RH, Zabel TH, Baxter AM, Hinds S. Static quadrupole moment of the first excited state of Si-30. Phys Rev Lett. 1979;43(20):1463. https://doi.org/10.1103/PhysRevLett.43.1463
24. Raman S, Nestor CW Jr, Tikkanen P. Transition probability from the ground to the first-excited 2+ state of even–even nuclides. At Data Nucl Data Tables. 2001;78(1):1–28. https://doi.org/10.1006/adnd.2001.0858
25. Ibbotson RW, Glasmacher T, Brown BA, Chen L, Chromik MJ, Cottle PD, Fauerbach M, Kemper KW, Morrissey DJ, Scheit H, Thoennessen M. Quadrupole collectivity in 32, 34, 36, 38Si and the N=20 shell closure. Phys Rev Lett. 1998;80(10):2081. https://doi.org/10.1103/PhysRevLett.80.2081
26. Khvastunov V, Afanasev N, Afanasev V, Bondaren E, Gulkarov I, Savitski G, Shevchen N. Scattering of high-energy electrons by isotopes Mg-24 and Mg-26. J Nucl Phys USSR. 1971;12(1):5.
27. Niedermaier O, Scheit H, Bildstein V, Boie H, Fitting J, von Hahn R, Köck F, Lauer M, Pal UK, Podlech H, Repnow R. Safe Coulomb excitation of Mg-30. Phys Rev Lett. 2005;94(17):172501. https://doi.org/10.1103/PhysRevLett.94.172501
28. Pritychenko BV, Glasmacher T, Cottle PD, Fauerbach M, Ibbotson RW, Kemper KW, Maddalena V, Navin A, Ronningen R, Sakharuk A, Scheit H. Role of intruder configurations in 26, 28Ne and 30, 32Mg. Phys Lett B. 1999;461(4):322–8. https://doi.org/10.1016/S0370-2693(99)00850-3
29. Singhal RP, Caplan HS, Moreira JR, Drake TE. Inelastic electron scattering from 20, 22Ne. Can J Phys. 1973;51(20):2125–37. https://doi.org/10.1016/0375-9474(75)90525-4
30. Niedermaier OT. Thesis. Univ Heidelberg, Germany; 2005.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms