Convergence Theorems Via Hybrid Multivalued Mappings

Authors

DOI:

https://doi.org/10.30526/39.1.4171

Keywords:

Hybrid multivalued mapping, , (φ,L)^*-weak contraction,, condition (Ă)

Abstract

Abstract   

      The algorithms has a great role to find zeroes of metric projection point , fixed point and common fixed point in Hilbert space .It is well known that the metric projection mapping plays important role in Fixed point theory , Differential Equations, Optimization theory and Variational Inequality problem. The success, effectiveness, speed and superiority of iterative methods over other approximate methods depend on two important factors: The first is the number of iterations, and the second is time. In this paper, we introduce new iterative, it has been generalized to a number of algorithms, such as the algorithm used in27, which is considered a generalization of the Ishikawa's iteration algorithm. We use family of hybrid multivalued mappings, nonexpansive single valued mappings and (φ,L)^*- weak contraction mapping where φ is a comparison function in Hilbert space, the concept of (φ,L)^*- weak contraction mapping it is generalization of the concept (φ,L)- weak contraction mapping, we obtain several convergence theorems under suitable conditions.

Author Biographies

  • Saddam Muhsin Ghadeer, Department of Mathematics, College of Education for Pure Science (Ibn Al-Haithem), University of Baghdad, Baghdad, Iraq

    PhD student

  • Zena Hussein Maibed, Department of Mathematics, College of Education for Pure Science (Ibn Al-Haithem), University of Baghdad, Baghdad, Iraq

    .

References

1.Petrov E, Ravindra K. Fixed point theorem for generalized Kannan type mappings. Rend Circ Mat Palermo Ser. 2024;73(8):2895-2912. https://doi.org/10.1007/s12215-024-01079-3

2.Singh SL, Mishra S, Chugh R, Kamal R. General common fixed point theorems and applications. J Appl Math, 2012; 2012(1): 902312. https://doi.org/10.1155/2012/902312

3.Şahin A, Alagöz O. On the approximation of fixed points for the class of mappings satisfying (CSC)-condition in Hadamard spaces. Carpathian Math Publ. 2023;15(2):495-506. https://doi.org/10.15330/cmp.15.2.495-506

4.Aggarwal G, Uddin. On common fixed points of non-Lipschitzian semigroups in a hyperbolic metric space endowed with a graph. J Anal. 2024;32(4):2233-2243. https://doi.org/10.1007/s41478-023-00683-3

5.Batra C, Chugh R, Kumar R, Suwais K, Almanasra S, Mlaiki N.Strong convergence of split equality variational inequality, variational inclusion, and multiple sets fixed point problems in Hilbert spaces with application. J Inequal Appl. 2024;2024(1):40. https://doi.org/10.1186/s13660-024-03118-0

6.Chugh R, Kumar R, Batra C. Variational inequality problem with application to convex minimization problem. Math Eng Sci Aerosp. 2023;14(1).

7.Piri H, Daraby B, Rahrovi S, Ghasemi M . Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process. Numer Algor. 2019;81:1129-1148. https://doi.org/10.1007/s11075-018-0588-x

8.Meenakshi G, Charu B. Strong convergence theorem for new four-step iterative method. Numer Algebra Control Optim. 2025;15(3): 785-799. https://doi.org/10.3934/naco.2024042

9.Zaki J, Hussein Z, Zainab. Common fixed point of Jungck-Picard iterative or two weakly compatible self-mappings. Iraqi J Sci. 2021;62 (5) https://doi.org/10.24996/10.24996/ijs.2021.62.5.32

10.Rouzkard F, Imdad M. Common fixed points for hybrid pair of generalized non-expensive mappings by a three-step iterative scheme. Int J Nonlinear Anal Appl. 2024;15(3):91-102. https://doi.org/ 10.22075/IJNAA.2022.21245.3444

11.lmo A, Donatus I. Weak and strong convergence theorems of modified projection-type Ishikawa iteration scheme for Lipschitz α-hemicontractive mappings. Eur J Math Anal. 2022;2(2022):10. https://doi.org/10.28924/ada/ma.2.10

12.Kondo A. Iterative scheme generating method beyond Ishikawa iterative method. Math Ann. 2025;391(2):2007-2028. https://doi.org/10.1007/s00208-024-02977-8

13.Maibed ZH, Thajil AQ. Equivalence of some iterations for class of quasi-contractive mappings. J Phys Conf Ser. 2021; 1879 (1):022115. https://doi.org/10.1088/1742-6596/1879/2/022115

14. Ishikawa S. Fixed points by a new iteration method. Proc Am Math Soc. 1974;44(1):147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5

15.Takahashi W. Fixed point theorems for new nonlinear mappings in a Hilbert space. J Nonlinear Convex Anal. 2010;11:79-87.

16.Cholamjiak P, Cholamjiak W. Fixed point theorems for hybrid multivalued mappings in Hilbert spaces. J Fixed Point Theory Appl. 2016;18:673-688. https://doi.org/10.1007/s11784-016-0302-3

17.Jose M, Edixon M. Common fixed points for (ψ-φ)-weak contractions type in b-metric spaces. Arab J Math,2021; 10(3): 639-658.‏ https://doi.org/10.1007/s40065-021-00347-9

18.Khairul H, Yumnam R, Naeem S. Fixed points of (α,β,F*) and (α,β,F**)-weak Geraghty contractions with an application. Symmetry. 2023;15(1):243. . https://doi.org/10.3390/sym15010243.

19.Rohen Y, Tomar A, Alam K. On fixed point and its application to the spread of infectious diseases model in Mvb-metric space. Math Methods Appl Sci. 2024;47(7):6489-6503. https://doi.org/10.1002/mma.9933

20.Moirangthem P, Yumnam R, Naeem S, Kairul H, Kumam A, Asima R . On fixed-point equations involving Geraghty-type contractions with solution to integral equation. Mathematics. 2023;11(24):4882. https://doi.org/10.3390/math11244882

21.Cholamjiak W, Chutibutr N, Weerakham S. Weak and strong convergence theorems for the modified Ishikawa iteration for two hybrid multivalued mappings in Hilbert spaces. Commun Korean Math Soc. 2018;33(3):767-786.

22.Okeke GA. Convergence analysis of the Picard–Ishikawa hybrid iterative process with applications. Afr Mat. 2019;30(5):817-835. https://doi.org/10.1007/s13370-019-00686-z

23.Kumam W, Pakkaranang N, Kumam P, Cholamjiak P. Convergence analysis of modified Picard-S hybrid iterative algorithms for total asymptotically nonexpansive mappings in Hadamard spaces. Int J Comput Math. 2020;97(12):175-188. https://doi.org/10.1080/00207160.2018.1476685

24.Srivastava J. Introduction of new Picard–S hybrid iteration with application and some results for nonexpansive mappings. Arab J Math Sci. 2022;28(1):61-76. https://doi.org/10.1108/AJMS-08-2020-0044

25.Lamba P, Panwar A. A Picard S* iterative algorithm for approximating fixed points of generalized α-nonexpansive mappings. J Math Comput Sci. 2021;11(3):2874-2892. https://doi.org/10.28919/jmcs/5624

26.Sarnmeta P, Suantai S. Existence and convergence theorems for best proximity points of proximal multivalued nonexpansive mappings. Commun Math Appl. 2019;10(3). https://doi.org/10.26713/cma.v10i3.1199.

27.Wang L. Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings. J Math Anal Appl. 2006;323(1):550-557. https://doi.org/10.1016/j.jmaa.2005.10.062

28.Berinde V. On the approximation of fixed points of weak contractive mappings. Carpathian J Math. 2003;19(1):7-22.

29.Padcharoen A, Sokhuma K, Abubakar J . Projection methods for quasi-nonexpansive multivalued mappings in Hilbert spaces. AIMS Math. 2023;8(3):7242-7257. https://doi.org/10.3934/math.2023364

30.Marino G, Xu HK. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J Math Anal Appl . 2007;329(1):336-346. https://doi.org/10.1016/j.jmaa.2006.06.055

31.Nakajo K, T akahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J Math Anal Appl. 2003;279(2):372-379. https://doi.org/10.1016/S0022-247X(02)00458-4

32.Martinez-Yanes C, Xu HK. Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal Theory Methods Appl. 2006;64(11):2400-2411. https://doi.org/10.1016/j.na.2005.08.018

33.Ferreira PJ. Fixed point problems—an introduction. Rev DETUA. 1996;1(6):505-513.

34.Isao Y. The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings. In: Butnariu D, Censor Y, Reich S, editors. Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications. Amsterdam: North-Holland, 2001. p. 473–504.https://doi.org/10.1016/S1570-579X(01)80028-8

Downloads

Published

20-Jan-2026

Issue

Section

Mathematics

How to Cite

[1]
Ghadeer, S.M. and Maibed, Z.H. 2026. Convergence Theorems Via Hybrid Multivalued Mappings. Ibn AL-Haitham Journal For Pure and Applied Sciences. 39, 1 (Jan. 2026), 288–296. DOI:https://doi.org/10.30526/39.1.4171.