Carbon Black in  Electromagnetic Interference Shielding Effectiveness of Lightweight Polypyrrole  in (C-Band and X-Band) Frequency Range

Authors

DOI:

https://doi.org/10.30526/39.1.4201

Keywords:

Electromagnetic interference (EM) shielding, 8-12GHz, 5.2- 8GHz), A.C electrical conductivity, Dielectric constant properties, TGA-DSC

Abstract

EMI (Electromagnetic Interference) shielding apeara lot of attention of that electronic devices are being used more widely and reports design progress for shielding..The EMI of PPy/Carbon black synthesized   different weight  (0,1,3,5 wt.%) of C.B  using chemical oxidation method at (3-7)°C and charactrized with  X-ray diffraction , Fourier transformation , Field Emission scanning electron microscopy , Electrical conductivity, high Electromagnetic Shielding Effectiveness (SE) in a frequency range of  5.85- 8.2GHz(C-band), 8.20-12.40GHz (x-band),and thermal analyzed using differential thermal analysis(TGA-DSC). FTIR reveal the required functional groups that should be present in all nanocomposites. The dispersion and  formed a network of conductive phases  that composites had a rough surface and a porous structure of the carbon black particles, according to FESEM results. The PPy  /C.B with the A.C conductivity  (3.04*10-3 )S/ cm exhibited shielding efficiency SE   in (C-band ) at( -33dB)  is highly dependent on carbon black  and thickness 1.5 mm  , with the maximum SE attenuation recorded at 5wt% of carbon black  being (-36dB )at 12 GHz. Also in( X-band )  that SE attenuation  recorded being at 8GHz . All PPy/C.B  nanocomposites exhibit decreasing dielectric properties (ɛ´, ɛ´´, tan δ) with increasing frequency .These nanocomposites demonstrate effective EMI shielding and can be used in various applications such as molecular electronics and microwave absorption materials. Test of TGA-DSC show that  exothermic reactions with the dominating weight% take place in ( 25-800) °C,  the glass transition temperatures (Tg) at low and high contents of PPy/C.B nanocomposites  between ( 110-160 °C ) . The obtained values of Tg showed complete miscibility of most composites. Thermo-gravimetric analysis showed that the Carbon black in polypyrrole nanocomposites formula has highest thermal stability with improved degradation temperature at 660-669 0C at 5% weight loss.

Author Biographies

  • Ali N. Obead, Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq.

  • Nadia A. Ali, Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq.

    Department of Physics, College of Science, University of Baghdad, Baghdad, Iraq.

References

1. Akram S, Ashraf M, Javid A, Abid A, Ahmad S, Nawab Y, Shaker K. Recent advances in electromagnetic interference (EMI) shielding textiles: A comprehensive review. Synth Met. 2023;294:117305. https://doi.org/10.1016/j.synthmet.2023.117305

2. Ghosh S, Remanan S, Mondal S, Ganguly S, Das P, Singha N, Das NC. Mechanically robust full IPN strengthened conductive cotton fabric for high strain tolerant EMI shielding. Chem Eng J. 2018;344:138–154. https://doi.org/10.1016/j.cej.2018.03.093

3. Zhu L, Zeng X, Chen M, Yu R. Controllable permittivity in 3D Fe₃O₄/CNTs network for remarkable microwave absorption. RSC Adv. 2017;7:26801–26808. https://doi.org/10.1039/C7RA04456A

4. Wanasinghe D, Aslani F. Recent advancements in EMI shielding metallic materials and processes: A review. Compos Part B Eng. 2019;176:107207. https://doi.org/10.1016/j.compositesb.2019.107207

5. Wu Y, Zhao Y, Zhou M, Tan S, Peymanfar R, Wang J, Liu P, Li X. Ultrabroad microwave absorption and infrared stealth of CuS@rGO aerogels. Nano Micro Lett. 2022;14:171. https://doi.org/10.1007/s40820-022-00906-5

6. Al-Saleh MH. Electrical, EMI shielding and tensile properties of PP/PE blends filled with GNP/CNT. Synth Met. 2016;217:322–330. https://doi.org/10.1016/j.synthmet.2016.04.023

7. Al-Saleh MH, Saadeh WH, Sundararaj U. EMI shielding effectiveness of carbon-based nanostructured polymers. Carbon. 2013;60:146–156. https://doi.org/10.1016/j.carbon.2013.04.008

8. Mondal S, Das P, Ganguly S, Ravindren R, Remanan S, Bhawal P, Das NC. Thermal-air ageing effects on CNT polymer nanocomposites. Compos Part A Appl Sci Manuf. 2018;107:447–460. https://doi.org/10.1016/j.compositesa.2018.01.025

9. Jeddi J, Katbab AA. Electrical conductivity and EMI shielding of PU/SR/CB/nanographite composites. Polym Compos. 2017;39:3452–3460. https://doi.org/10.1002/pc.24363

10. Pan Y, Liu X, Hao X, Starý Z, Schubert DW. Enhancing conductivity of carbon black-filled immiscible polymer blends. Eur Polym J. 2016;78:106–115. https://doi.org/10.1016/j.eurpolymj.2016.03.019

11. Kumar GS, Patro TU. Electromagnetic interference shielding and radar absorbing properties of carbon nanotube polymer films. Mater Res Express. 2018;5:115304. https://doi.org/10.1088/2053-1591/aade39

12. Kuester S, Barra GMO, Demarquette NR. Morphology and electromagnetic interference shielding of SEBS/CNT nanocomposites. Polym Int. 2018;67:1229–1240. https://doi.org/10.1002/pi.5630

13. Sharma SK, Gupta V, Tandon RP, Sachdev VK. Synergic effect of graphene and MWCNT on electromagnetic interference shielding. RSC Adv. 2016;6:18257–18265. https://doi.org/10.1039/C5RA23418B

14. Chen Z, Xu C, Ma C, Ren W, Cheng HM. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater. 2013;25:1296–1300. https://doi.org/10.1002/adma.201204196

15. Szeluga U, Kumanek B, Trzebicka B. Synergy in hybrid polymer/nanocarbon composites: A review. Compos Part A Appl Sci Manuf. 2015;73:204–231. https://doi.org/10.1016/j.compositesa.2015.02.021

16. Wu J, Ye Z, Ge H, Chen J, Liu W, Liu Z. Carbon fiber/magnetic graphene/epoxy composites with enhanced electromagnetic interference shielding effectiveness. J Colloid Interface Sci. 2017;506:217–226. https://doi.org/10.1016/j.jcis.2017.07.020

17. Rani P, Malik RS. Electromagnetic interference shielding behavior of polypyrrole-impregnated PEI/SPEEK composites. Mater Chem Phys. 2023;307:128187. https://doi.org/10.1016/j.matchemphys.2023.128187

18. Lapka T, Kopecký D, Mazúr P, Prokeš J, Ulbrich P, Dendisová M, Stejskal J. Nanofibrillated cellulose composites with polypyrrole nanotubes for flexible electronics. Synth Met. 2021;278:116806. https://doi.org/10.1016/j.synthmet.2021.116806

19. Alawi BI, Ali NA. Enhanced electromagnetic interference shielding performance of PMMA/graphene/silver hybrid composites. Ibn Al-Haitham J. Pure Appl. Sci. 2024;37(4): 207–225. https://doi.org/10.30526/37.4.3604.

20. Jawad MK, Noori FTM, Hussein SI, Ali NA, Muslim ZR, Saleh MA. Polypyrrole-functionalized multiwalled carbon nanotube heterojunctions for gas detection applications. Iraqi J Appl Phys. 2024;20(3):573–576.

21. Wei LS, Mao SC, Ming ML, Song B, Chan YW, Jia L, Lau SP. Flexible graphene/polymer multilayered sandwich films for high-performance electromagnetic interference shielding. Carbon. 2014;66:67–76.

22. Farzaneh F, Pei LY, Ramesh UK, Gedler G, Antunes M, Velasco JI, Covas JA. Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites via supercritical CO₂ processing. Mater Des. 2016;90:906–914. https://doi.org/10.1016/j.matdes.2015.11.040

23. Nehru R, Gnanakrishnan S, Senthil Kumar B, Chen CE, Dong CD. Polypyrrole–carbon black/BiPO₄ composites for sensing and environmental applications. Process Saf Environ Prot. 2024;184:790–803. https://doi.org/10.1016/j.psep.2024.01.023

24. Ahmed FM, Hassan SM, Kamil MI. DC electrical conductivity of polypyrrole/graphene nanocomposites. Iraqi J Phys. 2020;18(44):50–61.

25. Hussein SI, Hashim AA, Jasim SM, Ali NA, Ali IH, Rashad M, Ahmed FM. Acrylic/graphene hybrid polymers with enhanced electromagnetic interference shielding properties. Diam Relat Mater. 2025;154:112190. https://doi.org/10.1016/j.diamond.2025.112190

26. Memioglu F, Bayrakceken A, Oznuluer T, Ak M. Polypyrrole/carbon composite materials as catalyst supports for hydrogen energy applications. Int J Hydrogen Energy. 2012;37(21):16673–16679. https://doi.org/10.1016/j.ijhydene.2012.08.095

27. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Feng J. Polypyrrole/carbon aerogel composites for high-performance supercapacitor electrodes. J Power Sources. 2010;195(19):6964–6969. https://doi.org/10.1016/j.jpowsour.2010.05.008

28. Ansari R. Polypyrrole conducting electroactive polymers: Synthesis, characterization, and stability. E-J Chem. 2006;3(13):186–201. https://doi.org/10.1155/2006/860413

29. Heiba ZK, Ghannam MM, Sanad MMS, Albassam AA, Mohamed MB. Structural, optical, and dielectric properties of nano-ZnMn₂−xVxO₄ materials. J Mater Sci Mater Electron. 2020;31:8946–8962. https://doi.org/10.1007/s10854-020-03429-0

30. Gao C, Chen G. Conducting polymer/carbon thermoelectric composites: A review. Compos Sci Technol. 2016;124:52–70. https://doi.org/10.1016/j.compscitech.2016.01.004

31. Wang L, Jiang J, Xu J, Zhou W, Li C, Sun H, Zhang Q. Effects of second dopants on electrical conductivity and morphology of PEDOT:PSS/carbon black composites. Mater Chem Phys. 2015

Downloads

Published

20-Jan-2026

Issue

Section

Physics

How to Cite

[1]
Obead, A. N. and Ali, N.A. 2026. Carbon Black in  Electromagnetic Interference Shielding Effectiveness of Lightweight Polypyrrole  in (C-Band and X-Band) Frequency Range. Ibn AL-Haitham Journal For Pure and Applied Sciences. 39, 1 (Jan. 2026), 140–154. DOI:https://doi.org/10.30526/39.1.4201.