Comparative Histopathological Study of Ciprofloxacin Impact on Mus Musculus Renal Cortex Infected with Multi-drug Resistance and Susceptible Uropathogenic Escherichia Coli
DOI:
https://doi.org/10.30526/39.1.4204Keywords:
UPEC, Ciprofloxacin, Renal cortex, renal medulla Antibiotic resistanceAbstract
Urinary tract infections are mainly caused by uropathogenic Escherichia coli, which represent a significant global issue along with the rising of antibiotic resistance and treatment challenges. The aim of this study was to evaluate ciprofloxacin efficacy as a treatment in animal models following infection with multidrug-resistant UPEC and multidrug-susceptible UPEC and to determine the nephrotoxic effect of these antibiotics on the renal cortex. Up to 76 E. coli isolates were collected from UTI patients in Baghdad province, characterized by morphological and biochemical features, and confirmed using the Vitek-2 compact system. Mice were orally infected via gastric gavage with G33 using a bacterial load of 107 cells/ml, followed by post-infection treatment strategies with the aid of ciprofloxacin post-infection. Efficacy was determined by reduction in bacterial load, body weight, and renal cortex cross-sections. Ciprofloxacin significantly reduced the bacterial load but also caused toxicity to the kidney, such as tubular necrosis, hemorrhage, and congestion of glomeruli. This study highlights the urgent need for specialized antibiotic treatment systems to reduce drug resistance and nephrotoxicity effects. Further studies are essential to minimize renal damage.
References
ohamedi JA, Sangeda RZ, Mwambete KD. Prevalence of urinary tract infection and antimicrobial resistance patterns of uropathogens with biofilm forming capacity among outpatients in Morogoro, Tanzania: a cross-sectional study. BMC Infect Dis. 2023;23(1):660. https://doi.org/10.1186/s12879-023-08641-x
2. Shah C, Baral R, Bartaula B, Shrestha LB. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 2019;19:204. https://doi.org/10.1186/s12866-019-1587-3.
3. Raoof MAJ, Fayidh MA. Molecular study to detect blaTEM and blaCTX-M genes in ESβL Escherichia coli and their antimicrobial resistance profile. J Phys Conf Ser. 2021;1879(2):022051. https://doi.org/10.1088/1742-6596/1879/2/022051
4. Hamady DR, Ibrahim SK. The study on ability of Escherichia coli isolated from different clinical cases to biofilm formation and detection of csgD gene responsible for produce Curli (Fimbriae). Biochem Cell Arch. 2020;20(2):[page numbers not specified].
5. Al-Zaidi,O.S.S.H, Zwain, L.A. and Mahmoud, E.A. Effect of ciprofloxacin and Trimethoprim/Sulfamethoxazole on Biofilm formation of Multi-Drug Resistant Uropathogenic Escherichia coli. Int. J. Des. Nat. Ecodyn. 2025; 20(4):691-703. http://doi:10.18280/ijdne.200401.
6. Raoof MAJ, Fayidh MA. Investigation of biofilm formation efficiency in ESβLs of pathogenic Escherichia coli isolates. Int J Drug Deliv Technol. 2022;12(2):695–700.
7. Bunduki GK, Heinz E, Phiri VS, Noah P, Feasey N, Musaya J. Virulence factors and antimicrobial resistance of uropathogenic Escherichia coli (UPEC) isolated from urinary tract infections: a systematic review and meta-analysis. BMC Infect Dis. 2021;21:1–13. https://doi.org/10.1186/s12879-021-06435-7
8. Bryce A, Hay AD, Lane IF, Thornton HV, Wootton M, Costelloe C. Global prevalence of antibiotic resistance in paediatric urinary tract infections caused by Escherichia coli and association with routine use of antibiotics in primary care: systematic review and meta-analysis. BMJ. 2016;352:i939. https://doi.org/10.1136/bmj.i939
9. Chockalingam A, Stewart S, Xu L, Gandhi A, Matta MK, Patel V, Sacks L, Rouse R. Evaluation of immunocompetent urinary tract infected Balb/C mouse model for the study of antibiotic resistance development using Escherichia coli CFT073 infection. Antibiotics. 2019;8:170. https://doi.org/10.3390/antibiotics8040170
10. Campbell RE, Chen CH, Edelstein CL. Overview of antibiotic-induced nephrotoxicity. Kidney Int Rep. 2023;8:2211–2225.
11. Crellin E, Mansfield KE, Leyrat C, Nitsch D, Douglas IJ, Root A, Williamson E, Smeeth L, Tomlinson LA. Trimethoprim use for urinary tract infection and risk of adverse outcomes in older patients: cohort study. BMJ. 2018;360:k341. https://doi.org/10.1136/bmj.k341
12. Tille PM. Baily and Scott’s Diagnostic Microbiology. 12th ed. St. Louis: Mosby, Inc., Elsevier; 2021.
13. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31. https://doi.org/10.4103/0976-0105.177703.
14. Bancroft JD, Layton C. The hematoxylins and eosin. In: Bancroft JD, Layton C, editors. Bancroft’s Theory and Practice of Histological Techniques. 7th ed. Shanghai: Churchill Livingstone Elsevier Ltd.; 2013. p. 173–86.
15. Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLoS Pathog. 2010;6(8):e1001042. https://doi.org/10.1371/journal.ppat.1001042
16. Smith SN, Hagan EC, Lane MC, Mobley HL. Dissemination and systemic colonization of uropathogenic Escherichia coli in a murine model of bacteremia. mBio. 2010;1(5):e00262-10. https://doi.org/10.1128/mBio.00262-10.
17. Narayanan A, Muyyarikkandy MS, Mooyottu S, Venkitanarayanan K, Amalaradjou MA. Oral supplementation of trans‐cinnamaldehyde reduces uropathogenic Escherichia coli colonization in a mouse model. Lett Appl Microbiol. 2017;64(3):192–7. https://doi.org/10.1111/lam.12713.
18. Schwartz DJ, Chen SL, Hultgren SJ, Seed PC. Population dynamics and niche distribution of uropathogenic Escherichia coli during acute and chronic urinary tract infection. Infect Immun. 2011;79(10):4250–9. https://doi.org/10.1128/IAI.05339-11.
19. Herrera-Espejo S, Domínguez-Miranda JL, Rodríguez-Mogollo JI, Pachón J, Cordero E, Pachón-Ibáñez ME. Effects of pH on the pathogenicity of Escherichia coli and Klebsiella pneumoniae on the kidney: In vitro and in vivo studies. Int J Mol Sci. 2024;25(14):7925. https://doi.org/10.3390/ijms25147925.
20. Weyers AI, Ugnia LI, Ovando HG, Gorla NB. Ciprofloxacin increases hepatic and renal lipid hydroperoxides levels in mice. Biocell. 2002;26(2):225–8.
21. Ilgin S, Can OD, Atli O, Ucel UI, Sener E, Guven I. Ciprofloxacin-induced neurotoxicity: evaluation of possible underlying mechanisms. Toxicol Mech Methods. 2015;25(5):374–81. https://doi.org/10.3109/15376516.2015.1026008.
22. Alhowail AH. Ciprofloxacin produces memory deficits in male mice. Int J Pharmacol. 2020;16(1):27–32. https://doi.org/10.3923/ijp.2020.27.32.
23. Priyadharshini KM. Ciprofloxacin induced body weight and haematological changes in rats and antioxidant vitamin A, C and E as rescue agents. Int J Eng Sci Invention. 2013;22:21–31. https://doi.org/10.9790/3008-0531218.
24. Norville IH, Hatch GJ, Bewley KR, Atkinson DJ, Hamblin KA, Blanchard JD, Armstrong SJ, Pitman JK, Rayner E, Hall G, Vipond J, Atkins TP. Efficacy of liposome-encapsulated ciprofloxacin in a murine model of Q fever. Antimicrob Agents Chemother. 2014;58(9):5510–5518. https://doi.org/10.1128/AAC.03443-14
25. Islam MS, Belal B, Dash S, Islam MS, Hasan MM. Chronic exposure of ciprofloxacin antibiotic residue above the MRL level and its pathophysiological effects in mice. Curr Res Complement Altern Med. 2024;8(249):2577–2201. https://doi.org/10.29011/2577-2201.100249.
26. Zarrinpar A, Chaix A, Xu ZZ, Chang MW, Marotz CA, Saghatelian A, Knight R, Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun. 2018;9:2872. https://doi.org/10.1038/s41467-018-05336-9.
27. Al-Shawi NN. Possible histological changes induced by therapeutic doses of ciprofloxacin in liver and kidney of juvenile rats. Pharmacologia. 2012;3(9):477-480. https://doi.org/10.5567/pharmacologia.2012.477.480.
28. Elbe H, Dogan Z, Taslidere E, Çetin A, Turkoz Y. Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats: A histological and biochemical study. Hum Exp Toxicol. 2016;35(3):276-281. https://doi.org/10.1177/0960327115584686 SAGE Journals
29. Khudhiar AS, Al-Khamas AJ, Hadi SJ, Murad MM, Faris JK, Zballa Almermdhy HAE. Effect of hesperidin and ciprofloxacin on the function and histological structure of kidney in local male rabbits. Biochem Cell Arch. 2019;19(2):4279-4283.
30. Genid AAK, Ibrahim A, Elagwany AM, Yehia MAH, Biram DM. The Effect of Ciprofloxacin on Renal Cortex of Adult Male Albino Rat and the Possible Protective Role of Olive Oil: Anatomical and Histological Study. Egypt J Histol. 2023;46(3):1494-1511. https://doi.org/10.21608/ejh.2022.143262.1701 Egyptian Journal of Histology
31. Long N, Deng J, Qiu M, Zhang Y, Wang Y, Guo W, Dai M, Lin L. Inflammatory and pathological changes in Escherichia coli infected mice. Heliyon. 2022;8(12):e12533. https://doi.org/10.1016/j.heliyon.2022.e12533
32. Al-Zamely H, Falh S. The Effect of Experimental Escherichia coli Infection on Some Blood Parameters and Histological Changes in Male Rats. Iraqi J Vet Med. 2011;35(2):22-27. https://doi.org/10.30539/iraqijvm.v35i2.571 jcovm.uobaghdad.edu.iq
33. Eaton KA, Friedman DI, Francis GJ, Tyler JS, Young VB, Haeger J, Abu-Ali G, Whittam TS. Pathogenesis of renal disease due to enterohemorrhagic Escherichia coli in germ-free mice. Infect Immun. 2008;76(7):3054-3063. https://doi.org/10.1128/IAI.01626-07
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





