Improvement of Structural and Optical Properties of ZnO1-xAgOx Nano Composite Thin Film Using Pulsed Laser Deposition
DOI:
https://doi.org/10.30526/39.1.4206Keywords:
Semiconductors, Pulse Laser Deposition, AgO, ZnO Nanoparticle, ZnO1-xAgOx Nanocrystalline, Thin FilmsAbstract
Thin films of ZnO1-xAgOx nanostructures were successfully deposited on glass substrates using pulsed laser deposition with varying AgO nanoparticle concentrations. Structural and optical characterizations were performed to evaluate the effect of AgO incorporation. XRD patterns confirmed a hexagonal polycrystalline structure, with additional peaks for cubic silver or silver oxide due to AgO inclusion. Crystal size slightly increased at x = 0.05 and 0.25, indicating enhanced growth, while it decreased at other ratios due to lattice strain and defects. FTIR analysis showed Zn–O stretching modes, hydroxyl, carbon-based groups, and Ag–O bands, confirming successful incorporation. AFM results revealed reduced surface roughness with low AgO ratios, followed by increased roughness at x = 0.25 and 0.30. Optical transmittance decreased, while absorption increased with AgO, and the optical band gap narrowed from 3.2 eV to 2.2 eV. Hall Effect measurements indicated reduced n-type carrier concentration, suggesting a shift toward p-type conductivity via acceptor level formation.
References
1. Kasai N, Kakudo M, Ahmeda MH, Ahmida NH, Ahmeida AA. Introduction to nanotechnology: Definition, terms, occurrence and applications in environment. Libyan Int Med Univ J. 2017;2(1):12.https://doi.org/10.21502/limuj.003.02.2017
2. Nasrollahzadeh M, Sajadi SM, Sajjadi M, Issaabadi Z. An introduction to nanotechnology. Interface Sci Technol. 2019;28:1–27.https://doi.org/10.1016/B978-0-12-813586-0.00001-8
3. Aadim KA, Mohammad AZ, Abduljabbar MA. Influence of laser energy on synthesizes of CdO nanoparticles in liquid environment. IOP Conf Ser Mater Sci Eng. 2018;454:012028 .https://doi.org/10.1088/1757-899X/454/1/012028
4. Mohammed DT, Mohammed GH. Investigation of structural, optical and electrical properties of MnO doped with Cu thin films prepared by PLD technique for solar cell applications. East Eur J Phys. 2023;(3):391–399.https://doi.org/10.26565/2312-4334-2023-3-42
5. Mosquera AA, Albella JM, Navarro V, Bhattacharyya D, Endrino JL. Effect of silver on the phase transition and wettability of titanium oxide films. Sci Rep. 2016;6:32171. https://doi.org/10.1038/srep32171
6. Dellasega D, Casari CS, Vario F, Conti C, Bottani CE, Bassi AL. Nanostructured Ag₄O₄ thin films produced by ion beam oxidation of silver. Appl Surf Sci. 2013;266:161–169. https://doi.org/10.1016/j.apsusc.2012.11.121
7. Bao K, Zhao Y, Ding W, Xiao Y, Yang B. First principles study of p-type transition and enhanced optoelectronic properties of g-ZnO based on diverse doping strategies. Nanomaterials. 2024;14:1863. https://doi.org/10.3390/nano14231863
8. Yu J, Han W, Suleiman AA, Han S, Miao N, Ling FCC. Recent advances on pulsed laser deposition of large-scale thin films. Small Methods. 2024;8(7):2301282. https://doi.org/10.1002/smtd.202301282
9. Al-Bayati AA, Ali HF. Synthesis, structural, and optical characterization of ZnO/SnO₂ nanocomposites thin films prepared by spin coating and pulse laser deposition. Iraqi J Phys. 2025;23(1):68–77.
10. Cullity BD, Stock SR. Elements of X-ray Diffraction. 3rd ed. New Jersey: Prentice Hall; 2001.
11. Abbas LK. Effect of thickness on structural, morphological, and optical properties for nanocrystalline thin films of Cd₁₋ₓSnₓS for optoelectronic applications. Baghdad Sci J. 2024;21(8):2730–2740.
12. Chitradevi T, Lenus JA, Victor Jaya N. Structure, morphology and luminescence properties of sol–gel synthesized pure and Ag-doped ZnO nanoparticles. Mater Res Express. 2020;7(1):015011.
13. Farha AH, Al Naim AF, Mansour SA. Cost-effective and efficient cool nanopigments based on oleic-acid-surface-modified ZnO nanostructures. Materials. 2023;16(6):2159. https://doi.org/10.3390/ma16062159
14. Matei A, Stoian M, Crăciun G, Țucureanu V. Chemical synthesis and characterization of fatty acid-capped ZnO nanoparticles. J Compos Sci. 2024;8(10):429. https://doi.org/10.3390/jcs8100429
15. Uribe-López MC, Hidalgo-López MC, López-González R, Frías-Márquez DM, Núñez-Nogueira G, Hernández-Castillo D. Photocatalytic activity of ZnO nanoparticles and the role of the synthesis method on their physical and chemical properties. J Photochem Photobiol A Chem. 2021;404:112866. https://doi.org/10.1016/j.jphotochem.2020.112866
16. Abdullwahed MB, Mohammed AM, Ali FF. Synthesis and characterisation of ZnO–Ag thin films and their use as ammonia sensors. Solid State Technol. 2020;63(2).
17. Kumar A, Dhiman P, Singh M. Effect of Fe-doping on the structural, optical and magnetic properties of ZnO thin films prepared by RF magnetron sputtering. Ceram Int. 2016;42:7918–7923. https://doi.org/10.1016/j.ceramint.2016.01.038
18. Godbole R, Godbole VP, Alegaonkar PS, Bhagwat S. Effect of film thickness on gas sensing properties of sprayed WO₃ thin films. New J Chem. 2017;41:11807. https://doi.org/10.1039/C7NJ02460D
19. Obead AH, Abbas NK. Studying the structural and optical properties of Zn₁−ₓMgₓO nanoparticles. J Opt. 2024;1–14. https://doi.org/10.1007/s12596-024-00323-5
20. Dutta G, Chinnaiyan SK, Sugumaran A, Narayanasamy D. Sustainable bioactivity enhancement of ZnO–Ag nanoparticles in antimicrobial, antibiofilm, lung cancer, and photocatalytic applications. RSC Adv. 2023;13(38):26663–26682. https://doi.org/10.1039/D3RA03521F
21. Dhawale DS, Dubal DP, Phadatare MR, Patil JS, Lokhande CD. Synthesis and characterizations of CdS nanorods by SILAR method: Effect of film thickness. J Mater Sci. 2011;46:5009–5015. https://doi.org/10.1007/s10853-011-5321-5
22. Şahin B, Kaya T. Facile preparation and characterization of nanostructured ZnO/CuO composite thin film for sweat concentration sensing applications. Mater Sci Semicond Process. 2021;121:105428. https://doi.org/10.1016/j.mssp.2020.105428
23. Abbas HH, Hasan BA. The effect of silver oxide on the structural and optical properties of ZnO:AgO thin films. Iraqi J Sci. 2022; 63(4):1526–1539. https://doi.org/10.24996/ijs.2022.63.4.13
24. Gawande MB, Waghmare SR, Gosavi SW. Effect of silver doping on structural, optical and photocatalytic properties of ZnO nanoparticles. RSC Adv. 2024;14(27):19763–19771.
25. Ahmed S, Khan W, Rahman MM, Khan A, Wahab MA, Alshareef SA. Ag-doped ZnO nanorods decorated on graphene-coated flexible substrate for UV detection. Front Chem. 2021;9:661127.
26. Abozied AM, Mostafa AM, Abouelsayed A, Hassan AF, Ramadan AA, Al-Ashkar EA. Preparation, characterization, and nonlinear optical properties of graphene oxide thin film doped with low chirality metallic SWCNTs. J Mater Res Technol. 2021;12:1461–1472. https://doi.org/10.1016/j.jmrt.2021.03.068
27. Ziashahabi A, Prato M, Dang Z, Poursalehi R, Naseri N. The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Sci Rep. 2019;9(1):11839. https://doi.org/10.1038/s41598-019-48128-z
28. Shah WH, Alam A, Javed H, Rashid K, Ali A, Ali L. Tuning of the band gap and dielectric loss factor by Mn doping of Zn₁−ₓMnₓO nanoparticles. Sci Rep. 2023;13(1):8646. https://doi.org/10.1038/s41598-023-35987-4
29. Avelar-Muñoz F, Gómez-Rosales R, Ortiz-Hernández AA, Durán-Muñoz H, Berumen-Torres JA, Vagas-Téllez JA. Long electrical stability on dual acceptor p-type ZnO:Ag, N thin films. Micromachines.2024;15(6):800. https://doi.org/10.3390/mi15060800
30. Bao K, Zhao Y, Ding W, Xiao Y, Yang B. First principles study of p-type transition and enhanced optoelectronic properties of g-ZnO based on diverse doping strategies. Nanomaterials. 2024;14(23):1863. https://doi.org/10.3390/nano14231863
31. Kang HS, Ahn BD, Kim JH, Kim GH, Lim SH, Chang HW, Lee SY. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl Phys Lett. 2006;88(20): 202108. https://doi.org/10.1063/1.2203952
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





