Study of Nuclear Properties in the Exotic Mirror Nuclei ⁸B and ⁸Li
DOI:
https://doi.org/10.30526/39.1.4276Keywords:
Mirror nuclei, Symmetrized Woods, Saxon potentialAbstract
The ground-state properties like the nuclear densities and the root mean square radii of exotic mirror nuclei 8B and 8Li have been investigated using the Skyrme Hartree Fock and Symmetrized woods Saxon calculations Additionally, several nuclear observables have been investigated, including longitudinal elastic electron scattering form factors, binding energies, Coulomb displacement energies, magnetic dipole moments, and electric quadrupole moments. The results of the evaluation are contrasted with the experimental data that is currently available. It found that a common feature of the neutron and matter densities for the above-selected exotic nuclei is the long tail behavior. We assumed that both 8Li and 8B have a structure of the core nuclei 7Be and 7L plus a valence. It found that the structure of the valence one-neutron of 8Li and one-proton 8B is a pure 1p1/2 orbit. The elastic charge form factors of the above selected exotic nuclei are evaluated using the plane wave Born approximation and compared with those of their stable isotope 7Li and 10 B.
References
1. Abdullah AN. Systematic study of the nuclear structure for some exotic nuclei using Skyrme–Hartree–Fock method. Iran J Sci Technol Trans Sci. 2020;44:283–288. https://doi.org/10.1007/s40995-019-00799-x
2. Abdullah AN, Flaiyh GN. Study of density distributions for some exotic nuclei using symmetrized Woods–Saxon potential. Mod Phys Lett A. 2020;40:2550036. https://doi.org/10.1142/S0217732325500361
3. Hansen PG, Jonson B. The neutron halo of extremely neutron-rich nuclei. Eur Phys Lett. 1987;4(4):409–414. https://doi.org/10.1209/0295-5075/4/4/005
4. Wang Z, Ren ZZ. Probing proton halo of the exotic nucleus 28S by elastic electron scattering. Sci China Ser G Phys Astron. 2004;47:42–51. https://doi.org/10.1360/02yw0187
5. Nakamura T, Fukuda N, Kobayashi T, Aoi N, Iwasaki H, Kubo T, Mengoni D, Notani M, Saito T, Shimoura S, Suzuki T, Takahashi H, Yanagisawa Y, Ishihara M. Coulomb dissociation of 19C and its halo structure. Phys Rev Lett. 1999;83(6):1112–1115. https://doi.org/10.1103/PhysRevLett.83.1112
6. Geithner W, Kappertz S, Keim M, Lievens P, Neugart R, Neyens G, Vermeeren L, Vingerhoets P, Wilbert J. Measurement of the magnetic moment of the one-neutron halo nucleus 11Be. Phys Rev Lett. 1999;83:3792–3795. https://doi.org/10.1103/PhysRevLett.83.3792
7. Alkhazov GD, Belostotsky SL, Vorobyov AA. Scattering of 1 GeV protons on nuclei. Phys Rep. 1978;42:89–144. https://doi.org/10.1016/0370-1573(78)90083-2
8. Tu XL, Zhang YH, Xu XH, Wang M, Audi G. A survey of Coulomb displacement energies and anomalous behavior in the upper fp-shell. J Phys G Nucl Part Phys. 2014;41:025104. https://doi.org/10.1088/0954-3899/41/2/025104
9. Kumar P, Kaur S, Thakur V, Kumar R, Dhiman SK. Neutron skin thickness and proton radii of mirror nuclei within covariant density functional theory. Mod Phys Lett A. 2024;39(07):2450022. https://doi.org/10.1142/S0217732324500226
10. Grypeos ME, Koutroulos CG, Papadopoulos HM. The “cosh” or symmetrized Woods–Saxon nuclear potential. J Phys G Nucl Part Phys. 1991;17:1093–1105. https://doi.org/10.1088/0954-3899/17/7/008
11. Chu Y, Ren ZZ, Xu C. Properties of proton-rich nuclei in a three-body model. Eur Phys J A. 2008;37:361–366. https://doi.org/10.1140/epja/i2008-10626-2
12. Abbas SA, Raheem EM, Alwan IH. Nuclear structure of some Ni and Zn isotopes with Skyrme–Hartree–Fock interaction. Baghdad Sci J. 2022;19:914–923. https://doi.org/10.21123/bsj.2022.19.4.0914
13. Raheem EM, Abdul Hasan AA, Alwan IH. Ground state properties of some Ni isotopes using Skyrme–Hartree–Fock method. Iraqi J Phys. 2019;17:1–10. https://doi.org/10.30723/ijp.v17i42.195
14. Sammarruca F. Proton skins, neutron skins, and proton radii of mirror nuclei. Front Phys. 2018;6:8. https://doi.org/10.3389/fphy.2018.00090
15. Antonov AN, Gaidarov MK, Kadrev DN, Hodgson PE, De Guerra EM. Charge density distributions and form factors in neutron-rich exotic nuclei. Int J Mod Phys E. 2004;13:759–782. https://doi.org/10.1142/S0218301304002430
16. Karataglidis S, Amos K. Electron scattering form factors from exotic nuclei. Phys Lett B. 2007;650:148–152. https://doi.org/10.1016/j.physletb.2007.04.051
17. Ali AH. Electric quadrupole moments of some scandium isotopes using shell model calculations. Baghdad Sci J. 2018;15:304–310. https://doi.org/10.21123/bsj.2018.15.3.0304
18. Brussaard PJ, Glaudemans PWM. Shell Model Applications in Nuclear Spectroscopy. Amsterdam: North-Holland; 1977.
19. Audi G, Kondev FG, Wang M, Huang WJ, Naimi S. The NUBASE2016 evaluation of nuclear properties. Chin Phys C. 2017;41(3):030001. https://doi.org/10.1088/1674-1137/41/3/030001
20. Wang M, Huang WJ, Kondev FG, Audi G, Naimi S. AME 2020 atomic mass evaluation (II). Chin Phys C. 2021;45:030003. https://doi.org/10.1088/1674-1137/abddaf
21. Gambacurta D, Li L, Colò G, Lombardo U, Van Giai N, Zuo W. Local energy density functionals from Brueckner–Hartree–Fock calculations. Phys Rev C. 2011;84:024301. https://doi.org/10.1103/PhysRevC.84.024301
22. Brown BA, Rae WDM. The shell-model code NuShellX@MSU. Nucl Data Sheets. 2014;120:115–118. https://doi.org/10.1016/j.nds.2014.07.022
23. Tanihata I, Savajols H, Kanungo R. Experimental progress in nuclear halo structure studies. Prog Part Nucl Phys. 2013;68:215–313. https://doi.org/10.1016/j.ppnp.2012.07.001
24. Dobrovolsky AV, Korolev GA, Inglessi AG, Alkhazov GD, Colò G, Dillmann I, Yatsoura VI. Nuclear-matter distribution in 7Be and 8B. Nucl Phys A. 2019;989:40–58. https://doi.org/10.1016/j.nuclphysa.2019.05.012
25. Alkhazov GD, Vorobyov AA, Dobrovolsky AV, Inglessi AG, Korolev GA, Khanzadeev AV. Structure of light exotic nuclei by proton elastic scattering. Phys At Nucl. 2015;78:381–394. https://doi.org/10.1134/S1063778815020076
26. Stone NJ. Table of nuclear magnetic dipole and electric quadrupole moments. At Data Nucl Data Tables. 2005;90:75–176. https://doi.org/10.1016/j.adt.2005.04.001
27. Nesbet RK. Atomic Bethe–Goldstone calculations of hyperfine structure of B. Phys Rev A. 1970;2(4):1208–1213. https://doi.org/10.1103/PhysRevA.2.1208
28. Dubbers D, Dörr K, Ackermann H. Quadrupole moment of 8Li from NMR transitions. Z Phys A. 1977;282:243–252. https://doi.org/10.1007/BF01414890
29. Winnacker A. Narrow NMR lines of 8Li in solids. Phys Lett A. 1978;67:423–426. https://doi.org/10.1016/0375-9601(78)90353-5
30. Beckmann K, Boklen KD, Elke D. Magnetic dipole moments of light nuclei. Z Phys. 1974;270:173–182. https://doi.org/10.1007/BF01680407
31. Fan GW, Fukuda M, Nishimura D, Cai XL, Fukuda S, Hachiuma I, Ichikawa C, Izumikawa T, Kanazawa M, Kitagawa A, Kuboki T, Lantz M, Mihara M, Nagashima M, Namihira K, Ohkuma Y, Ohtsubo T, Ren ZZ, Sato S, Sheng ZQ, Sugiyama M, Suzuki S, Suzuki T, Takechi M, Yamaguchi T, Xu W. Phys Rev C. 2015;91:014614. https://doi.org/10.1103/PhysRevC.91.014614
32. Stovall T, Goldemberg J, Isabelle DB. Coulomb form factors of 10B and 11B. Nucl Phys. 1966;86:225–240. https://doi.org/10.1016/0029-5582(66)90302-6
33. Lichtenstadt J, Alster J, Moinester MA, Dubach J, Hicks RS, Peterson GA, Kowalski S. Form factors of the 7Li ground-state doublet. Phys Lett B. 1989;219:394–398. https://doi.org/10.1016/0370-2693(89)91083-6
34. Booten JGL, Van Hees AGM. Magnetic electron scattering from p-shell nuclei. Nucl Phys A. 1994;569:510–522. https://doi.org/10.1016/0375-9474(94)90316-6
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ibn AL-Haitham Journal For Pure and Applied Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
licenseTerms





