Photo -induced Electron Transfer Between Ruthenium (II) tris –(2,2  - bipyrdine ) and Methyl Viologen
Abstract
Electron transfer (ET) reactions represent an elementary chemical process which occurs in a large variety of molecules, ranging from small ion pairs up to large biological system. A theoretical study of photo – induced electron transfer between Ruthenium (II) tirs -( 2,2 ï‚¢- bipyrdine ) Ru(bpy)  2 3 and Methyl Viologen MV2+ in a variety of Solvents at room temperature is presented . This study is based on an optical activation by the absorption of light .The Solvent is described by a dielectric continuum model, and the transferring is represented by a quantum mechanical wave function . In this application, the reorganization energy ï¬ , the driving free energy ï¯ Gï„ , and the activation free energy G ï„ â€¡ are calculated with semi classical model . The electronic coupling for the electron transfer DA V reaction is taken from Mulliken –Hush method, and the rate of electron transfer KET in   ï€ 2 2 3( ) Ru bpy MV system are calculated with a quantum mechanical model. Our calculation results for the electron transfer in   ï€ 2 2 3( ) Ru bpy MV system show a good agreement with the experimentally observed results .