Construction of Complete (k,n)-arcs in the Projective Plane PG(2,11) Over Galois Field GF(11), 3 ï‚£ n ï‚£ 11
Main Article Content
Abstract
The purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3  n  11. A (k,n)-arcs is a set of k points no n + 1 of which are collinear. A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc
Article Details
How to Cite
[1]
Mahammad, A. 2017. Construction of Complete (k,n)-arcs in the Projective Plane PG(2,11) Over Galois Field GF(11), 3 ï‚£ n ï‚£ 11. Ibn AL-Haitham Journal For Pure and Applied Sciences. 22, 2 (Aug. 2017).
Issue
Section
Mathematics
licenseTerms