Solving Nonlinear COVID-19 Mathematical Model Using a Reliable Numerical Method

Main Article Content

Emad Talal Ghadeer
Maha A. Mohammed

Abstract

This research aims to numerically solve a nonlinear initial value problem presented as a system of ordinary differential equations. Our focus is on epidemiological systems in particular. The accurate numerical method that is the Runge-Kutta method of order four has been used to solve this problem that is represented in the epidemic model. The COVID-19 mathematical epidemic model in Iraq from 2020 to the next years is the application under study. Finally, the results obtained for the COVID-19 model have been discussed tabular and graphically. The spread of the COVID-19 pandemic can be observed via the behavior of the different stages of the model that approximates the behavior of actual the COVID-19 epidemic in Iraq. In our study, the COVID-19 pandemic will disappear during the next few years within about five years, through the behavior of all stages of the epidemic presented in our research.

Article Details

How to Cite
Ghadeer, E. T. ., & Mohammed, M. A. (2022). Solving Nonlinear COVID-19 Mathematical Model Using a Reliable Numerical Method. Ibn AL- Haitham Journal For Pure and Applied Sciences, 35(2), 97–107. https://doi.org/10.30526/35.2.2818
Section
mathematics

References

Wang, C.; Horby, P. W.; Hayden, F. G.; Gao. G. F. A novel coronavirus outbreak of global health concern. The lancet. 2020, 395(10223), 470-473.

Zhao,S.; Chen, H. Modeling the epidemic dynamics and control of COVID-19 outbreak in China. Quantitative biology. 2020, 8(1), 11-19.

Huang, Y.; Yang, L.; Dai, H.; Tian, F.; Chen, K. Epidemic situation and forecasting of COVID-19 in and outside China. Bull World Health Organ. 2020, 10. doi:10.2471/BLT.20.255158

JD, V. W.; Osinga. S.; Kuip. V. M.; Tanck. M.; Hanegraaf. M.; Pluymaekers. M.; et al. Forecasting hospitalization and ICU rates of the COVID-19 outbreak: An efficient SEIR model.[Submitted]. Bull World Health Organ. 2020.

Yang,W.; Zhang, D.; Peng, L.; Zhuge, C.; Hong,L. Rational evaluation of various epidemic models based on the COVID-19 data of China. Epidemics. 2021, 37, 100-501.

Li, M. Y. An introduction to mathematical modeling of infectious diseases (Vol. 2): Springer, 2018, ISBN 978-3-319-722121-7.

Lutz, C. S.; Huynh, M. P.; Schroeder, M.; Anyatonwu, S.; Dahlgren. F. S.; Lutz. C. S.; Huynh.M. P.; Schroeder, M.; Anyatonwu, S.; Dahlgren,F. S. G.; Danyluk, D.; Fernandez, S.K.; Greene,N.; Kipshidze. L. L., et al. Applying infectious disease forecasting to public health: a path forward using influenza forecasting examples. BMC Public Health. 2019, 19(1), 1-12.

Basu,S.; Andrews, J. Complexity in mathematical models of public health policies: a guide for consumers of models. PLoS medicine. 2013, 10(10), e1001540.

Han, X. N.; De Vlas, S. J.; Fang, L. Q.; Feng, D.; Cao, W. C.; Habbema, J. D. F. Mathematical modelling of SARS and other infectious diseases in China: a review. Tropical Medicine & International Health. 2009, 14, 92-100.

Beauchemin, C. A.; Handel, A. A review of mathematical models of influenza A infections within a host or cell culture: lessons learned and challenges ahead. BMC Public Health. 2011, 11(1), 1-15.

Kermack, W. O.; McKendrick,A. G. Contributions to the mathematical theory of epidemics--I. 1927. Bulletin of mathematical biology. 1991, 53(1-2), 33-55.

Kermack, W. O.; McKendrick, A. G. Contributions to the mathematical theory of epidemics. II.—The problem of endemicity. Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character. 1932, 138(834), 55-83.

Diekmann, O.; Heesterbeek, H..; Britton, T. Mathematical tools for understanding infectious disease dynamics: Princeton University Press, 2012; ISBN: 9781400845620

Kretzschmar, M.; Van H. S.; Wallinga, J.; Van W. J. Ring vaccination and smallpox control. Emerging infectious diseases. 2004, 10(5), 832.

Rodrigues, H. S.; Monteiro, M. T. T.; Torres, D. F. Vaccination models and optimal control strategies to dengue. Mathematical biosciences. 2014, 247, 1-12.

Mohammed, M. A., Noor, N. F. M., Siri, Z., ; Ibrahim, A. I. N. (2015). Numerical solution for weight reduction model due to health campaigns in Spain. Paper presented at the AIP Conference Proceedings.

Sabaa, M. A.; Mohammed, M. A., Abd Almjeed, S. H. Approximate Solutions for Alcohol Consumption Model in Spain. Ibn AL-Haitham Journal For Pure and Applied Sciences. 2019, 32(3), 153-164.

Sabaa, M. A.; Mohammed, M. A. Approximate Solutions of Nonlinear Smoking Habit Model. Iraqi Journal of Science. 2020, 435-443.

Mohammed, S. J.; Mohammed, M. A. (2021). Runge-kutta Numerical Method for Solving Nonlinear Influenza Model. Paper presented at the Journal of Physics: Conference Series.

Huisen, R. W.; Abd Almjeed, S. H.; Mohammed, A. S. A Reliable Iterative Transform Method for Solving an Epidemic Model. Iraqi Journal of Science. 2021, 4839-4846.

Mohsen, A. A.; Al-Husseiny, H. F.; Zhou, X.; Hattaf, K. Global stability of COVID-19 model involving the quarantine strategy and media coverage effects. AIMS public Health. 2020, 7(3), 587.

Ahmed, A.; Salam, B.; Mohammad, M.; Akgul, A.; Khoshnaw, S. H. Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. Aims Bioeng. 2020, 7(3), 130-146.

Mohammed, D. A.; Tawfeeq, H. M.; Ali, K. M.; Rostam, H. M. Analysis and Prediction of COVID-19 Outbreak by the Numerical Modelling. Iraqi Journal of Science. 2021, 62 (5), 1452-1459.

Yavuz, M.; Coşar, F. Ö.; Günay, F.; Özdemir, F. N. A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign. Open Journal of Modelling and Simulation. 2021, 9(3), 299-321.

Yousif, M.S. and Kashiem, B.E., Solving Linear Boundary Value Problem Using Shooting Continuous Explicit Runge-Kutta Method. Ibn AL-Haitham Journal For Pure and Applied Science, 2017, 26(3), 324-330.

Mandal,M.; Jana, S.; Nandi, S. K.; Khatua, A.; Adak, S.; Kar, T. A model based study on the dynamics of COVID-19: Prediction and control. Chaos, Solitons & Fractals. 2020, 136, 109889.

Tay, K. G.; Kek, S. L.; Cheong, T. H.; Abdul-Kahar, R.; Lee, M. F. The Fourth Order Runge-Kutta Spreadsheet Calculator Using VBA Programing for Ordinary Differential Equations. Procedia-Social and Behavioral Sciences. 2015, 204, 231-239.

World Health Organization. Weekly Report. 2022, January 5 “Weekly epidemiological update”. WHO TEAM. Retrieved January 28, 2022, from https://www.who.int/publications/m/item/weekly-epidemiological-update---5-january-2021

World Health Organization Weekly Report. 2022, January 5 “Weekly epidemiological update”. WHO TEAM. Retrieved January 28, 2022, from https://covid19.who.int/region/emro/country/iq.