A Theoretical Investigation of Charge Transfer Dynamics from Sensitized Molecule D35CPDT Dye to SnO_2 and TiO_2 Semiconductor

Main Article Content

Estabraq Hasan
Hadi J. M. Alagealy

Abstract

In this research, the dynamics process of charge transfer from the sensitized  D35CPDT dye to tin(iv) oxide( ) or titanium dioxide (  ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of  or  semiconductors vary from a  to  for system and from a   to  for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT /  the system is larger than the rate in D35CPDT/  a system depending on transition energy and driving energy. However, the charge transfer for both systems to be large is associated with large transition energy, decreasing driving energy and potential, and increasing strength coupling with Methanol solvent.

Article Details

How to Cite
Hasan, E., & Alagealy, H. J. M. (2022). A Theoretical Investigation of Charge Transfer Dynamics from Sensitized Molecule D35CPDT Dye to SnO_2 and TiO_2 Semiconductor. Ibn AL-Haitham Journal For Pure and Applied Sciences, 35(3), 5–15. https://doi.org/10.30526/35.3.2839
Section
physics
Author Biography

Hadi J. M. Alagealy, Department of Physics, College of Education for Pure Science \ Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

department of physics 

References

Saputri, D. G.; Supriyanto, A.; Ahmad, M. K.; Diyanahesa, N. E. H.; Ramadhani, F. Optical properties of dye DN-F05 as a good sensitizer. Journal of Physics: Theories and Applications,2019, 3(2), 43-49.‏

Liu, P.; Xu, B.; Karlsson, K. M.; Zhang, J.; Vlachopoulos, N.; Boschloo, G.; Kloo, L. (2015). The combination of a new organic D–π–A dye with different organic hole-transport materials for efficient solid-state dye-sensitized solar cells. Journal of Materials Chemistry A,2015, 3(8), 4420-4427.‏

Obeed, H. M.; Al-Agealy, H. J. Investigation and studied of charge transfer processes at HATNA and HATNA-Cl6 molecules contact with Cu metal. In AIP Conference Proceedings,2020, (Vol. 2292, No. 1, p. 040010). AIP Publishing LLC.‏.

Eriksson, S. K.; Josefsson, I.; Ellis, H.; Amat, A.; Pastore, M.; Oscarsson, J.; Rensmo, H. Geometrical and energetical structural changes in organic dyes for dye-sensitized solar cells probed using photoelectron spectroscopy and DFT. Physical Chemistry Chemical Physics,2016, 18(1), 252-260.‏

Carr, J. M., Allen, T. G., Larson, B. W., Davydenko, I. G., Dasari, R. R., Barlow, S., Rumbles, G. Short and long-range electron transfer compete to determine free-charge yield in organic semiconductors. Materials Horizons.2022.‏

Al-agealy, H. J. M.; Al-Hakany, J. S. H. (2017). Theoretical Calculations of Rate Constant of Electron Transfer Across N3/TiO2 Sensitized Dye Interface Solar Cell. Ibn AL-Haitham Journal For Pure and Applied Science,2017, 25(2).‏

Kevin Tvrdya , Pavel, A. Frantsuzovc, ; Prashant, V. Kamat,Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles ,PNAS,2011,108,1, 29–34, .

AL-agealy, H. J. M.; Harbbi, K. H.; Hassooni, M. A.;Noori, R. I. Theoretical Study of Charge Transfer in Styryl Thiazilo Quinoxaline Dyes STQ-1, STQ-2, and STQ-3 in Organic Media System. Baghdad Science Journal,2013, 10(4).‏

Maleki, E.; Ranjbar, M.; Kahani, S. A. The effect of antisolvent dropping delay time on the morphology and structure of the perovskite layer in the hole transport material free perovskite solar cells. Progress in Color, Colorants and Coatings,2021, 14(1), 47-54.‏

Ellis, H.; Eriksson, S. K.; Feldt, S. M.; Gabrielsson, E.; Lohse, P. W.; Lindblad, R.; Hagfeldt, A. Linker unit modification of triphenylamine-based organic dyes for efficient cobalt mediated dye-sensitized solar cells. The Journal of Physical Chemistry C, 2013,117(41), 21029-21036.‏

Tada, H.; Naya, S. I. Atomic level interface control of SnO2-TiO2 nanohybrids for the photocatalytic activity enhancement. Catalysts, 2021, 11(2), 205.‏

Xiong, L.; Guo, Y.; Wen, J.; Liu, H.; Yang, G.; Qin, P.; Fang, G. Review on the application of SnO2 in perovskite solar cells. Advanced Functional Materials,2018, 28(35), 1802757.‏

Feng, Z.; Gaiardo, A.; Valt, M.; Fabbri, B.; Casotti, D.; Vanzetti, L.; Guidi, V. Investigation on Sensing Performance of Highly Doped Sb/SnO2. Sensors, 2022, 22(3), 1233.‏

Margan, P.; Haghighi, M. Hydrothermal-assisted sol–gel synthesis of Cd-doped TiO2 nanophotocatalyst for removal of acid orange from wastewater. Journal of Sol-Gel Science and Technology, 2017,81(2), 556-569.‏

Björklund, J., 2016. Electron transfer processes in a dye-TiO2/SnO2-acceptor assembly: Towards long lived charge separated states for solar fuels (Master's thesis).‏

Hadi,J.M.Al-Agealy Rafah ,I.N.AL-Obaidi Charge transfer At Semiconductor / Liquid Interfaces,Ibn Al- Hathim J. for Pure and Appl. SCI .2009,22 ,2.

Maadhde, T. S. A.; Jumali, M. H.; Al-Agealy, H. J.; Razak, F. B. A.;Yap, C. C. An Investigation of the Fill Factor and Efficiency of Molecular Semiconductor Solar Cells. In Materials Science Forum, Trans Tech Publications Ltd.‏ 2021,1039, 373-381.

Al-Obaidi, S. S.; Al-Agealy, H. J.; Abbas, S. R. Theoretical Evaluation of Flow Electronic Rate at Au/TFB Interface. In Journal of Physics: Conference Series , 2021,1879,3,032096 IOP Publishing.‏

HadiJabbarAlagealy;Mohsin, A. Hassooni and Hind Mahdi Abdul Mageed,Theoretical Study of Electronic Transfer Current Rate at Dye-Sensitized Solar Cells,AIP Conference Proceedings 1968, 030055 (2018); doi: 10.1063/1.5039242View online:https://doi.org/10.1063/1.5039242

Hamann, T. W.; Gstrein, F.; Brunschwig, B. S.; Lewis, N. S. Measurement of the free-energy dependence of interfacial charge-transfer rate constants using ZnO/H2O semiconductor/liquid contacts. Journal of the American Chemical Society,2005, 127(21), 7815-7824.‏

Al-Agealy, H. J.; Janeri, H. H. D. A. (2019, July). Investigation the flow charge rate at InAs/D149 and ZnO/D149 system using theoretical quantum model. In AIP Conference Proceedings ,2019, 2123, 1, 020055). AIP Publishing LLC.‏

Al-agealy, H. J. M.; Al-Hakany, J. S. H. Theoretical Calculations of Rate Constant of Electron Transfer Across N3/TiO2 Sensitized Dye Interface Solar Cell. Ibn AL-Haitham Journal For Pure and Applied Science,2017, 25(2).‏

Saad, H. J. A. A. T.; Maudhady, A. Influence of The Polarity Function on the Probability of Transition Rate Constant (sec-1) At Metal/Molecule In Nano Scale Devices.‏2014.

Smallwood, I. (2012). Handbook of organic solvent properties. Butterworth-Heinemann.‏

Al-agealy, H. J.; Hassooni, M. A.; Sadoon, A. K.; Ashwiekh, A. M. Study and Invistagation of Electric Properties of Dye Sensitized Solar Cell. Mesopotamia Environmental Journal,2016. (Special Issue A).‏

Al-Agealy, H. J.; Al Maadhede, T. S.; Al Shafaay, B.; Mjeed, R. H.; Ashweik, A. M. Theoretical study of Charge Transfer simulation At Fe Metal with Ge and ZnO semiconductors Nano devices material. Energy Procedia, 2017, 119, 325-331.‏

Perevalov, T. V.;Gritsenko, V. A. Electronic structure of TiO2 rutile with oxygen vacancies: Ab initio simulations and comparison with the experiment. Journal of Experimental and Theoretical Physics,2011,112(2),310-316.‏

Gabrielsson, E.; Ellis, H.; Feldt, S.; Tian, H.; Boschloo, G.; Hagfeldt, A.;Sun, L. Convergent/Divergent Synthesis of a Linker‐Varied Series of Dyes for Dye‐Sensitized Solar Cells Based on the D35 Donor. Advanced Energy Materials,2013, 3(12), 1647-1656.‏

Lewis, N. S. Progress in understanding electron-transfer reactions at semiconductor/liquid interfaces. The Journal of Physical Chemistry B,1998, 102(25), 4843-4855.‏